
1 Indiscrete Affairs · I

 1 Abstract†

We show how a computational system can be constructed
to “reason,” effectively and consequentially, about its own in-
ferential processes. The analysis proceeds in two parts. First,
we consider the general question of computational semantics,
rejecting traditional approaches, and arguing that the declara-
tive and procedural aspects of computational symbols (what
they stand for, and what behaviour they engender) should be
analysed independently, in order that they may be coherently
related. Second, we investigate self-referential behaviour in
computational processes, and show how to embed an effec-
tive procedural model of a computational calculus within that
calculus (a model not unlike a meta-circular interpreter, but
connected to the fundamental operations of the machine in
such a way as to provide, at any point in a computation, fully
articulated descriptions of the state of that computation, for
inspection and possible modification). In terms of the theories
that result from these investigations, we present a general ar-
chitecture for procedurally reflective processes, able to shift
smoothly between dealing with a given subject domain, and
dealing with their own reasoning processes over that domain.

An instance of the general solution is worked out in the
context of an applicative language. Specifically, we present
three successive dialects of Lisp: 1Lisp,‡ a distillation of cur-
rent practice, for comparison purposes; 2Lisp, a dialect con-
structed in terms of our rationalised semantics, in which the

†The section numbers used here (‘1’ for the Abstract; ‘2’, Extended Ab-
stract; ‘3’, Preface; and ‘4’, Prologue) were introduced for this version.
‡As indicated in the Cover, in this version I have removed the hyphens
from the labels ‘1-Lisp’, ‘2-Lisp’, and ‘3-Lisp’ used in the dissertation, thus
using ‘1Lisp’, ‘2Lisp’, and ‘3Lisp,’ respectively.

 Procedural Relection in Programming Languages

 3a Preliminaries

2 Indiscrete Affairs · I

concept of evaluation is rejected in favour of independent no-
tions of simplification and reference, and in which the respec-
tive categories of notation, structure, semantics, and behaviour
arc strictly aligned; and 3Lisp, an extension of 2Lisp endowed
with reflective powers.

 2 Extended Abstract
We show how a computational system can be constructed to
“reason” effectively and consequentially about its own inference
processes. Our approach is to analyse self-referential behaviour
in computational systems, and to propose a theory of proce-
dural reflection that enables any programming language to be
extended in such a way as to support programs able to access
and manipulate structural descriptions of their own opera-
tions and structures. In particular, one must encode an explicit
theory of such a system within the structures of the system,
and then connect that theory to the fundamental operations
of the system in such a way as to support three primitive be-
haviours. First, at any point in the course of a computation, ful-
ly articulated descriptions of the state of the reasoning process
must be available for inspection and modification. Second, it
must be possible at any point to resume an arbitrary computa-
tion in accord with such (possibly modified) theory-relative
descriptions. Third, procedures that reason with descriptions
of the processor state must themselves be subject to descrip-
tion and review, to arbitrary depth. Such reflective abilities al-
low a process to shift smoothly between dealing with a given
subject domain, and dealing with its own reasoning processes
over that domain.

Crucial in the development of this theory is a comparison
of the respective semantics of programming languages (such
as Lisp and Algol) and declarative languages (such as logic
and the λ-calculus); we argue that unifying these tradition-
ally separate disciplines clarifies both, and suggests a simple

 3b · Dissertation — Introduction (V0.80)

 3

and natural approach to the question of procedural reflection.
More specifically, the semantical analysis of computational
systems should comprise independent formulations of declar-

ative import (what symbols stand for) and procedural conse-

quence (what effects and results are engendered by processing
them), although the two semantical treatments may, because
of side-effect interactions, have to be formulated in conjunc-
tion. When this approach is applied to a functional language it
is shown that the traditional notion of evaluation is confusing
and confused, and must be rejected in favour of independent
notions of reference and simplification. In addition, we defend a
standard of category alignment: there should be a systematic
correspondence between the respective categories of notation,
abstract structure, declarative semantics, and procedural con-
sequence (a mandate satisfied by no extant procedural formal-
ism). It is shown how a clarification of these prior semantical
and aesthetic issues enables a procedurally reflective dialect to
be clearly defined and readily constructed.

An instance of the general solution is worked out in the
context of an applicative language, where the question reduces
to one of defining an interpreted calculus able to inspect and
affect its own interpretation. In particular, we consider three
successive dialects of Lisp: 1Lisp, a distillation of current prac-
tice for comparison purposes; 2Lisp, a dialect categorically and
semantically rationalised with respect to an explicit theory of
declarative semantics for s-expressions; and 3Lisp, a derivative
of 2Lisp endowed with full reflective powers. 1Lisp, like all Lisp
dialects in current use, is at heart a first-order language, em-
ploying meta-syntactic facilities and dynamic variable scoping
protocols to partially mimic higher-order functionality. 2Lisp
like Scheme and the λ-calculus, is higher-order: it supports
arbitrary function designators in argument position, is lexical-
ly scoped, and treats the function position of an application in
a standard extensional manner. Unlike Scheme, however, the

4 Indiscrete Affairs · I

2Lisp processor is based on a regimen of normalisation, taking
each expression into a normal-form co-designator of its refer-
ent, where the notion of normal-form is in part defined with
respect to that referent’s semantic type, not (as in the case of
the λ-calculus) solely in terms of the further non-applicability
of a set of syntactic reduction rules. 2Lisp normal-form desig-
nators are environment-independent and side-effect free; thus
the concept of a closure can be reconstructed as a normal-form
function designator. In addition, since normalisation is a form
of simplification, and is therefore designation-preserving, meta-
structural expressions are not de-referenced upon normalisa-
tion, as they are when evaluated. Thus we say that the 2Lisp
processor is semantically flat, since it stays at a semantically
fixed level (although explicit referencing and de-referencing
primitives are also provided, to facilitate explicit level shifts).
Finally, because of its category alignment, argument objectifica-
tion (the ability to apply functions to a sequence of arguments
designated collectively by a single term) can be treated in the
2Lisp base-level language, without requiring resort to meta-
structural machinery.

3Lisp is straightforwardly defined as an extension of 2Lisp,
with respect to an explicitly articulated procedural theory of
3Lisp embedded in 3Lisp structures. This embedded theory,
called the reflective model, though superficially resembling
a meta-circular interpreter, is causally connected to the work-
ings of the underlying calculus in crucial and primitive ways.
Specifically, reflective procedures are supported that bind as ar-
guments (designators of) the continuation and environment
structure of the processor that would have been in effect at the
moment the reflective procedure was called, had the machine
been running all along in virtue of the explicit processing of
that reflective model. Because reflection may recurse arbitrari-
ly, 3Lisp is most simply defined as an infinite tower of 3Lisp
processes, each engendering the process immediately below

 3b · Dissertation — Introduction (V0.80)

 5

it. Under such an account, the use of reflective procedures
amounts to running programs at arbitrary levels in this reflec-
tive hierarchy. Both a straightforward implementation and a
conceptual analysis are provided to demonstrate that such a
machine is nevertheless finite.

The 3Lisp reflective model unifies three programming lan-
guage concepts that have formerly been viewed as indepen-
dent: meta-circular interpreters, explicit names for the primi-
tive interpretive procedures (eval and apply in standard Lisp
dialects), and procedures that access the state of the imple-
mentation (typically provided, as part of a programming en-
vironment, for debugging purposes). We show how all such
behaviours can be defined within a pure version of 3Lisp (i.e.,
independent of implementation), since all aspects of the state
of any 3Lisp process are available, with sufficient reflection, as
objectified entities within the 3Lisp structural field.

 3 Preface
The possibility of constructing a reflective calculus first struck
me in June 1976, at the Xerox Palo Alto Research Center
(parc), where I was spending a summer working with the
krl representation language of Bobrow and Winograd.1 As
an exercise to learn the new language, I had embarked on the
project of representing krl in krl; it seemed to me that this
“double-barreled” approach, in which I would have both to
use and to mention the language, would be a particularly ef-
ficient way to unravel its intricacies. Though that exercise was
ultimately abandoned, I stayed with it long enough to become
intrigued by the thought that one might build a system that
was self-descriptive in an important way (certainly in a way in
which my krl project was not). More specifically, I could dim-
ly envisage a computational system in which what happened
took effect in virtue of declarative descriptions of what was to

1‘krl’ for ‘Knowledge Representation Language; see Bobrow and Win-
ograd (1977) and Bobrow et al. (1977).

6 Indiscrete Affairs · I

happen, and in which the internal structural conditions were
represented in declarative descriptions of those internal struc-
tural conditions. In such a system a program could with equal
ease access all the basic operations and structures either di-
rectly or in terms of completely (and automatically) articulat-
ed descriptions of them. The idea seemed to me rather simple
(as it still does); furthermore, for a variety of reasons I thought
that such a reflective calculus could itself be rather simple—in
some important ways simpler than a non-reflective formalism
(this too I still believe). Designing such a formalism, however,
no longer seems as straightforward as I thought at the time;
this dissertation should be viewed as the first report emerging
from the research project that ensued.

Most of the five years since 1976 have been devoted to
initial versions of my specification of such a language, called
Mantiq, based on these original hunches. As mentioned in the
first paragraph of [dissertation] chapter 1,† there are various
non-trivial goals that must be met by the designer of any such
formalism, including at least a tentative solution to the knowl-
edge representation problem. Furthermore, in the course of
its development, Mantiq has come to rest on some additional
hypotheses above and beyond those mentioned above (includ-
ing, for example, a sense that it will be possible within a com-
putational setting to construct a formalism in which syntactic
identity and intensional identity can be identified, given some
appropriate, but independently specified, theory of intensional-
ity). Probably the major portion of my attention to date has
focused on these intensional aspects of the Mantiq architec-
ture.

It was clear from the outset that no dialect of Lisp (or of
any other purely procedural calculus) could serve as a full re-
flective formalism; purely declarative languages like logic or
the λ-calculus were dismissed for similar reasons. In Febru-
ary of 1981, however, I decided that it would be worth focus-

†Included here as ch. 3b, p.•.

a3

a4

a1

a2

 3b · Dissertation — Introduction (V0.80)

 7

ing on Lisp, by way of an example, in order to work out the
details of a specific subset of the issues with which Mantiq
would have to contend. In particular, I recognised that many
of the questions of reflection could be profitably studied in
a (limited) procedural dialect, in ways that would ultimately
illuminate the larger programme. Furthermore, to the extent
that Lisp could serve as a theoretical vehicle, it seemed a good
project; it would be much easier to develop, and even more
so to communicate, solutions in a formalism at least partially
understood.

The time from the original decision to look at procedural
reflection (and its concomitant emphasis on semantics—I
realised from investigations of Mantiq that semantics would
come to the fore in all aspects of the overall enterprise), to a
working implementation of 3Lisp, was only a few weeks. Ar-
ticulating why 3Lisp was the way it was, however—i.e., formu-
lating in plain English the concepts and categories on which
the design was founded—required quite intensive work for
the remainder of the year. A first draft of the dissertation was
completed at the end of December 1981; the implementation
remained essentially unchanged during the course of this writ-
ing (the only substantive alteration was the idea of treating
recursion in terms of explicit y-operators). Thus—and I sus-
pect there is nothing unusual in this experience—formulat-
ing an idea required approximately ten times more work than
embodying it in a machine; perhaps more surprisingly, all of
that effort in formulation occurred after the implementation
was complete. We sometimes hear that writing computer
programs is intellectually hygienic because it requires that we
make our ideas completely explicit. I have come to disagree
rather fundamentally with this view. Certainly writing a pro-
gram does not force one to one make one’s ideas articulate, al-
though it is a useful first step. More seriously, however, it is
often the case that the organising principles and fundamental

a5

a6

8 Indiscrete Affairs · I

insights contributing to the coherence of a program are not
explicitly encoded within the structures comprising that pro-
gram. The theory of declarative semantics embodied in 3Lisp,
for example, was initially tacit—a fact perhaps to be expected,
since only procedural consequence is explicitly encoded in
an implementation. Curiously, this is one of the reasons that
building a fully reflective formalism (as opposed to the limited
procedurally reflective languages considered here) is difficult:
in order to build a general reflective calculus, one must embed
within it a fully articulated theory of one’s understanding of it.
This will take some time.

 4 Prologue
It is a striking fact about human cognition that we can think
not only about the world around us, but also about our ideas,
our actions, our feelings, our past experience. This ability to
reflect lies behind much of the subtlety and flexibility with
which we deal with the world; it is an essential part of mas-
tering new skills, of reacting to unexpected circumstances, of
short-range and long-range planning, of recovering from mis-
takes, of extrapolating from past experience, and so on and
so forth. Reflective thinking characterises mundane practi-
cal matters and delicate theoretical distinctions. We have all
paused to review past circumstances, such as conversations
with guests or strangers, to consider the appropriateness of
our behaviour. We can remember times when we stopped and
consciously decided to consider a set of options, say when
confronted with a fire or other emergency. We understand
when someone tells us to believe everything a friend tells us,
unless we know otherwise. In the course of philosophical dis-
cussion we can agree to distinguish views we believe to be true
from those we have no reason to believe are false. In all these
cases the subject matter of our contemplation at the moment
of reflection includes our remembered experience, our private
thoughts, and our reasoning patterns.

 3b · Dissertation — Introduction (V0.80)

 9

The power and universality of reflective thinking has
caught the attention of the cognitive science community—in-
deed, once alerted to this aspect of human behaviour, theorists
find evidence of it almost everywhere. Though no one can yet
say just what it comes to, crucial ingredients would seem to
be the ability to recall memories of a world experienced in the
past and of one’s own participation in that world, the ability
to think about a phenomenal world, hypothetical or actual,
that is not currently being experienced (an ability presumably
mediated by our knowledge and belief), and a certain kind of
true self-reference: the ability to consider both one’s actions
and the workings of one’s own mind. This last aspect—the
self-referential aspect of reflective thought—has sparked par-
ticular interest for cognitive theorists, both in psychology (un-
der the label meta-cognition) and in artificial intelligence (in the
design of computational systems possessing inchoate reflec-
tive powers, particularly as evidenced in a collection of ideas
loosely allied in their use of the term “meta”: meta-level rules,
meta-descriptions, and so forth).

In artificial intelligence, the focus on computational forms
of self-referential reflective reasoning has become particularly
central. Although the task of endowing computational sys-
tems with subtlety and flexibility has proved difficult, we have
had some success in developing systems with a moderate grasp
of certain domains: electronics, bacteremia, simple mechanical
systems, etc. One of the most recalcitrant problems, however,
has been that of developing flexibility and modularity (in some
cases even simple effectiveness) in the reasoning processes that
use this world knowledge. Though it has been possible to con-
struct programs that perform a specific kind of reasoning task
(say, checking a circuit or parsing a subset of natural language
syntax), there has been less success in simulating “common
sense,” or in developing programs able to figure out what to
do, and how to do it, in either general or novel situations. If the

10 Indiscrete Affairs · I

course of reasoning—if the problem solving strategies and the
hypothesis formation behaviour—could itself be treated as a
valid subject domain in its own right, then (at least so the idea
goes) it might be possible to construct systems that manifested
the same modularity about their own thought processes that
they manifest about their primary subject domains. A simple
example might be an electronics “expert” able to choose an ap-
propriate method of tackling a particular circuit, depending
on a variety of questions about the relationship between its
own capacities and the problem at hand: whether the task was
primarily one of design or analysis or repair, what strategies
and skills it knew it had in such areas, how confident it was
in the relevance of specific approaches based on, say, the com-
plexity of the circuit, or on how similar it looked compared
with circuits it already knew. Expert human problem-solvers
clearly demonstrate such reflective abilities, and it appears
more and more certain that powerful computational problem
solvers will have to possess them as well.

No one would expect potent skills to arise automatically
in a reflective system; the mere ability to reason about the rea-
soning process will not magically yield systems able to reflect
in powerful and flexible ways. On the other hand, the dem-
onstration of such an ability is clearly a pre-requisite to its ef-
fective utilisation. Furthermore, many reasons are advanced
in support of reflection, as well as the primary one (the hope
of building a system able to decide how to structure the pat-
tern of its own reasoning). It has been argued, for example,
that it would be easier to construct powerful systems in the
first place (it would seem you could almost tell them how to
think), to interact with them when they fail, to trust them if
they could report on how they arrive at their decisions, to give
them “advice” about how to improve or discriminate, as well as
to provide them with their own strategies for reacting to their
history and experience.

 3b · Dissertation — Introduction (V0.80)

 11

There is even, as part of the general excitement, a tenta-
tive suggestion on how such a self-referential reflective process
might be constructed. This suggestion—nowhere argued but
clearly in evidence in several recent proposals—is a particular
instance of a general hypothesis, adopted by most a.I. research-
ers, that we will call the Knowledge Representation Hypothesis.
It is widely held in computational circles that any process
capable of reasoning intelligently about the world must con-
sist in part of a field of structures, of a roughly linguistic sort,
which in some fashion represent whatever knowledge and be-
liefs the process may be said to possess. For example, according
to this view, since I know that the sun sets each evening, my
“mind” must contain (among other things) a language-like or
symbolic structure that represents this fact, inscribed in some
kind of internal code. There are various assumptions that go
along with this view: there is for one thing presumed to be
an internal process that “runs over” or “computes with” these
representational structures, in such a way that the intelligent
behaviour of the whole results from the interaction of parts.
In addition, this ingredient process is required to react only to
the “form” or “shape” of these mental representations, without
regard to what they mean or represent—this is the substance
of the claim that computation involves formal symbol manipu-
lation. Thus my thought that, for example, the sun will soon
set, would be taken to emerge from an interaction in my mind
between an ingredient process and the shape or “spelling” of
various internal structures representing my knowledge that
the sun does regularly set each evening, that it is currently tea
time, and so forth.

The knowledge representation hypothesis may be sum-
marised as follows:

 Knowledge Representation Hypothesis: Any mechan-
ically embodied intelligent process will be comprised of
structural ingredients that (a) we as external observ-

a7

12 Indiscrete Affairs · I

ers naturally take to represent a propositional account
of the knowledge that the overall process exhibits, and
(b) independent of such external semantical attribution,
play a formal but causal and essential role in engender-
ing the behaviour that manifests that knowledge.

Thus for example if we felt disposed to say that some pro-
cess knew that dinosaurs were warm-blooded, then we would
find (according, presumably, to the best explanation of how
that process worked) that a certain computational ingredient
in that process was understood as representing the (proposi-
tional) fact that dinosaurs were warm-blooded, and further-
more, that this very ingredient played a role, independent of
our understanding of it as representational, in leading the pro-
cess to behave in whatever way inspired us to say that it knew
that fact. Presumably we would be convinced by the manner
in which the process answered certain questions about their
likely habitat, by assumptions it made about other aspects of
their existence, by postures it adopted on suggestions as to
why they may have become extinct, etc.

A careful analysis will show that. to the extent that we can
make sense of it, this view that knowing is representational is far
less evident—and perhaps, therefore, far more interesting—
than is commonly believed. To do it justice requires consider-
able care: accounts in cognitive psychology and the philosophy
of mind tend to founder on simplistic models of computation.
and artificial intelligence treatments often lack the theoreti-
cal rigour necessary to bring the essence of the idea into plain
view. Nonetheless, conclusion or hypothesis, it permeates cur-
rent theories of mind, and has in particular led researchers
in artificial intelligence to propose a spate of computational
languages and calculi designed to underwrite such representa-
tion. The common goal is of course not so much to speculate
on what is actually represented in any particular situation as to

 3b · Dissertation — Introduction (V0.80)

 13

uncover the general and categorical form of such representa-
tion. Thus no one would suggest how anyone actually repre-
sents facts about tea and sunsets: rather, they might posit the
general form in which such beliefs would be “written” (along
with other beliefs, such as that Lhasa is in Tibet, and that π is
an irrational number). Constraining all plausible suggestions,
however, is the requirement that they must be able to dem-
onstrate how a particular thought could emerge from such
representations—this is a crucial meta-theoretic characteris-
tic of artificial intelligence research. It is traditionally consid-
ered insufficient merely to propose true theories that do not
enable some causally effective mechanical embodiment. The
standard against which such theories must ultimately judged,
in other words, is whether they will serve to underwrite the
construction of demonstrable, behaving artefacts. Under this
general rubric knowledge representation efforts differ mark-
edly in scope, in approach, and in detail; they differ on such
crucial questions as whether or not the mental structure are
modality specific (one for visual memory, another for verbal,
for example). In spite of such differences, however, they man-
ifest the shared hope that an attainable first step towards a
full theory of mind will be the discovery of something like the
structure of the “mechanical mentalese” in which our beliefs
are inscribed.

It is natural to ask whether the knowledge representation
hypothesis deserves our endorsement, but this is not the place
to pursue that difficult question. Before it can fairly be asked,
we would have to distinguish a strong version claiming that
knowing is necessarily representational from a weaker version
claiming merely that it is possible to build a representational
knower. We would run straight into all the much-discussed
but virtually intractable questions about what would be re-
quired to convince us that an artificially constructed process
exhibited intelligent behaviour. We would certainly need a

14 Indiscrete Affairs · I

definition of the word ‘represent,’ about which we will subse-
quently have a good deal to say. Given the current (minimal)
state of our understanding, I myself see no reason to subscribe
to the strong view, and remain sceptical of the weak version as
well. But one of the most difficult questions is merely to ascer-
tain what the hypothesis is actually saying—thus my interest
in representation is more a concern to make it clear than it is to
defend or deny it The entire present investigation, therefore,
will be pursued under this hypothesis, not because we grant
it our allegiance, but merely because it deserves our attention.

Given the representation hypothesis, the suggestion as to
how to build self-reflective systems—a suggestion we will call
the Reflection Hypothesis—can be summarised as follows:

 Reflection Hypothesis: In as much as a computational
process can be constructed to reason about an external
world in virtue of comprising an ingredient process (in-
terpreter) formally manipulating representations of that
world, so too a computational process could be made to
reason about itself in virtue of comprising an ingredient
process (interpreter) formally manipulating representa-
tions of its own operations and structures.

Thus the task of building a computationally reflective system
is thought to reduce to, or at any rate to include, the task of
providing a system with formal representations of its own
constitution and behaviour. Hence a system able to imagine
a world where unicorns have wings would have to construct
formal representations of that fact; a system considering the
adoption of a hypothesis-and-test style of investigation would
have to construct formal structures representing such an infer-
ence regime.

Whatever its merit, there is ample evidence that research-
ers arc taken with this view. Systems such as Weyhrauch’s
fol, Doyle’s tms, McCarthy’s advIce-taker, Hayes’ golum,

a8

 3b · Dissertation — Introduction (V0.80)

 15

and Davis’ teresIus arc particularly explicit exemplars of
just such an approach.2 In Weyhrauch’s system, for example,
sentences in first-order logic arc constructed that axiomatize
the behaviour of the Lisp procedures used in the course of
the computation (fol is a prime example of the dual-calculus
approach mentioned earlier). In Doyle’s systems, explicit rep-
resentations of the dependencies between beliefs and of the
“reasons” the system accepts a conclusion play a causal role
in the inferential process. Similar remarks hold for the other
projects mentioned, as well as for a variety of other current
research. In addition, it turns out on scrutiny that a great deal
of current computational practice can be seen as dealing, in
one way or another, with reflective abilities, particularly as
exemplified by computational structures representing other
computational structures. We constantly encounter examples:
the wide-spread use of macros in Lisp, the use of meta-level
structures in representation languages, the use of explicit non-
monotonic inference rules, the popularity of meta-level rules
in planning systems.3 Such a list can be extended indefinitely;
in a recent symposium Brachman reported that the love affair
with “meta-level reasoning” was the most important theme of
knowledge representation research in the last decade.4

 4a The Relationship Between
 Reflection & Representation

The manner in which this discussion has been presented so
far would seem to imply that the interest in reflection and
the adoption of a representational stance are theoretically in-

2Weyhrauch (1978), Doyle (1979), McCarthy (1968), Hayes (1979), and
Davis (1980a), respectively.
3For a discussion of macros see the various sources on Lisp mentioned
in note 16 of chapter 1; meta-level rules in representation were discussed
in Brachman and Smith (1980); for a collection of papers on non-mono-
tonic reasoning see Bobrow (1980); macros are discussed in Pitman
(1980).
4Brachman (1980).

a9

16 Indiscrete Affairs · I

dependent positions. I have argued in this way for a reason:
to make clear that the two subjects are not the same. There
is no a priori reason to believe that even a fully representa-
tional system should in any way be reflective or able to make
anything approximating a reference to itself; similarly, there
is no proof that a powerfully self-referential system need be
constructed of representations. However—and this is the
crux of the matter—the reason to raise both issues together
is that they are surely, in some sense, related. If nothing else,
the word ‘representation’ comes from ‘re’ plus ‘present’, and the
ability to re-present a world to itself is undeniably a crucial, if
not the crucial, ingredient in reflective thought. If I reflect on
my childhood, I re-present to myself my school and the rooms
of my house; if I reflect on what I will do tomorrow, I bring
into the view of my mind’s eye the self I imagine that tomor-
row I will be. If we take “representation” to describe an ability
rather than a structure, reflection surely involves representa-
tion (although—and this should be kept clearly in mind—the
“representation” of the knowledge representation hypothesis
refers to ingredient structures, not to an activity).

It is helpful to look at the historical association between
these ideas, as well to search for commonalities in content.
In the early days of artificial intelligence, a search for the gen-
eral patterns of intelligent reasoning led to the development
of such general systems as Newell and Simon’s gps, predicate
logic theorem provers, and so forth.5 The descriptions of the
subject domains were minimal but were nonetheless primar-
ily declarative, particularly in the case of the systems based on
logic. However it proved difficult to make such general sys-
tems effective in particular cases: so much of the “expertise”
involved in problem solving seems domain and task specific.
In reaction against such generality, therefore, a procedural ap-
proach emerged in which the primary focus was on the ma-
nipulation and reasoning about specific problems in simple

5Newell and Simon (1963); Newell and Simon (1956).

 3b · Dissertation — Introduction (V0.80)

 17

worlds.6 Though the procedural approach in many ways
solved the problem of undirected inferential meandering, it
too had problems: it proved difficult to endow systems with
much generality or modularity when they were simply con-
stituted of procedures designed to manifest certain particu-
lar skills. In reaction to such brittle and parochial behaviour,
researchers turned instead to the development of processes
designed to work over general representations of the objects
and categories of the world in which the process was designed
to be embedded. Thus the representation hypothesis emerged
in the attempt to endow systems with generality, modularity,
flexibility, and so forth with respect to the embedding world,
but to retain a procedural effectiveness in the control compo-
nent.7 In other words, in terms of our main discussion, repre-
sentation as a method emerged as a solution to the problem
of providing general and flexible ways of reflecting (not self-
referentially) about the world.

Systems based on the representational approach—and it
is fair to say that most of the current “expert systems” are in
this tradition—have been relatively successful in certain re-
spects, but a major lingering problem has been a narrowness
and inflexibility regarding the style of reasoning these systems
employ in using these representational structures. This inflex-
ibility in reasoning is strikingly parallel to the inflexibility in
knowledge that led to the first round of representational sys-
tems; researchers have therefore suggested that we need re-
flective systems able to deal with their own constitutions as
well as with the worlds they inhabit. In other words, since the
style of the problem is so parallel to that just sketched, it has
seemed that another application of the same medicine might
be appropriate. If we could inscribe general knowledge about

6The proceduralist view was represented particularly by a spate of dis-
sertations emerging from mIt at the beginning of the 1970s; see for ex-
ample Winograd (1972), Hewitt (1972), Sussman et al. (1971), etc.
7See Minsky (1975), Winograd (1975), and all of the systems reported in
Brachman and Smith (1980).

18 Indiscrete Affairs · I

how to reason in a variety of circumstances in the “mentalese”
of these systems, it might be possible to design a relatively
simpler inferential regime over this “meta-knowledge about
reasoning,” thereby engendering a flexibility and modularity
regarding reasoning, just as the first representational work
engendered a flexibility and modularity about the process’s
embedding world.

There are problems, however, in too quick an association
between the two ideas, not the least of which is the question
of to whom these various forms of re-presentation are being
directed. In the normal case—that is to say, in the typical com-
putational process built under the aegis of the knowledge rep-
resentation hypothesis—a process is constituted from sym-
bols that we as external theorists take to be representational
structures; they are visible only to the ingredient interpretive
process [that is just part] of the whole, and they are visible to
that constituent process only formally (this is the basic claim
of computation). Thus the interpreter can see them, though it
is blind to the fact of their being representations. (In fact it is
almost a great joke that the blindly formal ingredient process
should be called an interpreter: when the Lisp interpreter eval-
uates the expression ‘(+ 2 3)’ and returns the result ‘6’, the last
thing it knows is that the numeral ‘2’ denotes the number two.)

Whatever is the case with the ingredient process, there is
no reason to suppose that the representational structures are
visible to the whole constituted process at all, formally or in-
formally. That process is made out of them; there is no more
a priori reason to suppose that they are accessible to its in-
spection than to suppose that a camera could take a picture
of its own shutter—no more reason to suppose it is even a
coherent possibility than to say that France is near Marseilles.
Current practice should overwhelmingly convince us of this
point: what is as tacit—what is as thoroughly lacking in self-
knowledge—as the typical modern computer system?

a10

a11

 3b · Dissertation — Introduction (V0.80)

 19

The point of the argument here is not to prove that one
cannot make such structures accessible—that one cannot make
a representational reflective system—but to make clear that
two ideas are involved. Furthermore, they are different in kind:
one (representation) is a possibly powerful method for the con-
struction of systems; the other (reflection) is a kind of behav-
iour we are asking our systems to exhibit. It remains a question
whether the representational method will prove useful in the
pursuit of the goal of reflective behaviour.

That, in a nutshell, is our overall project.

 4b The Theoretical Backdrop
It takes only a moment’s consideration of such questions as
the relationship between representation and reflection to rec-
ognise that the current state of our understanding of such
subjects is terribly inadequate. In spite of the general excite-
ment about reflection, self-reference, and computational rep-
resentation, no one has presented an underlying theory of
any of these issues. The reason is simple: we are so lacking
in adequate theories of the surrounding territory that, with-
out considerable preliminary work, cogent definitions cannot
even be attempted. Consider for example the case regarding
self-referential reflection, where just a few examples will make
this clear.

1. From the fact that a reflective system a is implemented
in system B, it docs not follow that system B is thereby
rendered reflective (for example, in this dissertation I
will present a partially-reflective dialect of Lisp that I
have implemented on a Digital Systems Corporation
pdp-10, but the pdp-10 is not itself reflective). Hence
even a definition of reflection will have to be backed
by theoretical apparatus capable of distinguishing be-
tween one abstract machine and another in which the
first is implemented—something we are not yet able
to do.

a12

20 Indiscrete Affairs · I

2. The notion seems to require of a computational pro-
cess, and (if we subscribe to the representational hy-
pothesis) of its interpreter, that in reflecting it “back
off ” one level of reference, and we lack theories both of
interpreters in general, and of computational reference
in particular.

3. Theories of computational interpretation will be re-
quired to clarify the confusion mentioned above re-
garding the relationship between reflection and rep-
resentation: for a system to reflect it must re-present
for itself its mental states; it is not sufficient for it to
comprise a set of formal representations inspected by
its interpreter. This is a distinction we encounter again
and again; a failure to make it is the most common er-
ror in discussions of the plausibility of artificial intel-
ligence from those outside the computational commu-
nity, derailing the arguments of such thinkers as Searle
and Fodor.8

4. Theories of reference will be required in order to make
sense of the question of what a computational process
is “thinking” about at all, whether reflective or not (for
example, it may be easy to claim that when a program
is manipulating data structures representing women’s
votes that the process as a whole is “thinking about suf-
frage,” but what is the process thinking about when the
interpreter is expanding a macro definition?).

5. Finally, if the search for reflection is taken up too en-
thusiastically, one is in danger of interpreting every-
thing as evidence of reflective thinking, since what
may not be reflective explicitly can usually be treated as
implicitly reflective (especially given a little imagination
on the part of the theorist). However we lack general
guidelines on how to distinguish explicit from implicit
aspects of computational structures.

8Searle (1980), Fodor (1978 and 1980).

 3b · Dissertation — Introduction (V0.80)

 21

Nor is our grasp of the representational question any clearer;
a serious difficulty, especially since the representational en-
deavour has received much more attention than has reflection.
Evidence of this lack can be seen in the fact that, in spite of an
approximate consensus regarding the general form of the task,
and substantial effort on its behalf, no representation scheme
yet proposed has won substantial acceptance in the field.
Again this is due at least in part to the simple absence of ad-
equate theoretical foundations in terms of which to formulate
either enterprise or solution. We do not have theories of either
representation or computation in terms of which to define the
terms of art currently employed in their pursuit (representa-
tion, implementation, interpretation, control structure. data struc-
ture, inheritance, and so forth), and are consequently without
any well-specified account of what it would be to succeed, let
alone of what to investigate, or of how to proceed. Numer-
ous related theories have been developed (model theories for
logic, theories of semantics for programming languages, and
so forth), but they do not address the issues of knowledge
representation directly, and it is surprisingly difficult to weave
their various insights into a single coherent whole.

The representational consensus alluded to above, in other
words, is widespread but vague; disagreements emerge on
every conceivable technical point, as was demonstrated in a
recent survey of the field.9 To begin with, the central notion
of “representation” remains notoriously unspecified: in spite
of the intuitions mentioned above, there is remarkably little
agreement on whether a representation must “re-present” in
any constrained way (like an image or copy), or whether the
word is synonymous with such general terms as “sign” or “sym-
bol.” A further confusion is shown by an inconsistency in us-
age as to what representation is a relationship between. The
sub-discipline is known as the representation of knowledge, but
in the survey just mentioned by far the majority of the respon-

9Brachman and Smith (1980).

22 Indiscrete Affairs · I

dents (to the surprise of this author) claimed to use the word,
albeit in a wide variety of ways, as between formal symbols
and the world about which the process is designed to reason. Thus
a klone structure might be said to represent Don Quixote tilt-
ing at a windmill; it would not be taken as representing the fact
or proposition of this activity. In other words the majority opin-
ion is not that we are representing knowledge at all, but rather,
as we put it above, that knowing is representational.10

In addition, we have only a dim understanding of the re-
lationship that holds between the purported representational
structures and the ingredient process that interprets them.
This relates to the crucial distinction between that interpret-
ing process and the whole process of which it is an ingredient
(whereas it is I who thinks of sunsets, it is at best a constituent
of my mind that inspects a mental representation). Further-
more, there are terminological confusions: the word ‘semantics’
is applied to a variety of concerns, ranging from how natural
language is translated into the representational structures, to
what those structures represent, to how they impinge on the
rational policies of the “mind” of which they are a part, to what
functions are computed by the interpreting process, etc. The
term ‘interpretation’ (to take another example) has two rela-
tively well-specified but quite independent meanings, one of
computational origin, the other more philosophical; how the
two relate remains so far unexplicated, although, as was just
mentioned, they are strikingly distinct.

Unfortunately, such general terminological problems are
just the tip of an iceberg. When we consider our specific rep-
resentational proposals, we are faced with a plethora of ap-
parently incomparable technical words and phrases. Node,
frame, unit, concept, schema, script, pattern, class, and plan,
for example, are all popular terms with similar connotations
and ill-defined meaning.11 The theoretical situation (this may

10See the introduction to Brachman and Smith (1980).
11References on node, frame, unit, concept, schema, script, pattern, class,

a13

a14

 3b · Dissertation — Introduction (V0.80)

 23

not be so harmful in terms of more practical goals) is further
hindered by the tendency for representational research to be
reported in a rather demonstrative fashion: researchers typi-
cally exhibit particular formal systems that (often quite im-
pressively) embody their insights, but that are defined using
formal terms peculiar to the system at hand. We are left on
our own to induce the relevant generalities and to locate them
in our evolving conception of the representation enterprise as
a whole. Furthermore, such practice makes comparison and
discussion of technical details always problematic and often
impossible, defeating attempts to build on previous work.

This lack of grounding and focus has not passed unnoticed:
in various quarters one hears the suggestion that, unless se-
verely constrained, the entire representation enterprise may be
ill-conceived—that we should turn instead to considerations
of particular epistemological issues (such as how we reason
about, say, liquids or actions), and should use as our techni-
cal base the traditional formal systems (logic, Lisp, and so
forth) that representation schemes were originally designed to
replace.12 In defense of this view two kinds of argument are
often advanced. The first is that questions about the central
cognitive faculty are at the very least premature, and more se-
riously may for principled reasons never succumb to the kind
of rigorous scientific analysis that characterizes recent stud-
ies of the peripheral aspects of mind: vision, audition, gram-
mar, manipulation, and so forth.13 The other argument is that
logic as developed by the logicians is in itself sufficient; that
all we need is a set of ideas about what axioms and inference

and plan can be found in the various references provided in Brachman
and Smith (1980).
12See in particular Hayes (1978).
13The distinction between central and peripheral aspects of mind is ar-
ticulated in Nilsson (1981); on the impossibility of central aI (Nilsson
himself feels that the central faculty will quite definitely succumb to aI’s
techniques) see Dreyfus (1972) and Fodor (1980 and forthcoming).

24 Indiscrete Affairs · I

protocols are best to adopt.14 But such doubts cannot be said
to have deterred the whole of the community: the survey just
mentioned lists more than thirty new representation systems
under active development.

The strength of this persistence is worth noting, especially
in connection with the theoretical difficulties just sketched.
There can be no doubt that there are scores of difficult prob-
lems: we have just barely touched on some of the most strik-
ing. But it would be a mistake to conclude in discouragement
that the enterprise is doomed, or to retreat to the meta-the-
oretic stability of adjacent fields (like proof theory, model
theory, programming language semantics, and so forth). The
moral is at once more difficult and yet more hopeful. What is
demanded is that we stay true to these undeniably powerful
ideas, and attempt to develop adequate theoretical structures
on this home ground. It is true that any satisfactory theory
of computational reflection must ultimately rest, more or less
explicitly, on theories of computation, of intensionality, of
objectification, of semantics and reference, of implicitness, of
formality, of computation, of interpretation, of representation,
and so forth. On the other hand as a community we have a
great deal of practice that often embodies intuitions that we
are unable to formulate coherently. The wealth of programs
and systems we have built often betray—sometimes in sur-
prising ways—patterns and insights that eluded our con-
scious thoughts in the course of their development. What is
mandated is a rational reconstruction of those intuitions and of
that practice.

In the case of designing reflective systems, such a recon-
struction is curiously urgent. In fact this long introductory
story ends with an odd twist—one that “ups the ante” in the
search for a carefully formulated theory, and suggests that
practical progress will be impeded until we take up the theo-
retical task. In general, it is of course possible (some would

14Nilsson (1981).

 3b · Dissertation — Introduction (V0.80)

 25

even advocate this approach) to build an instance of a class
of artefact before formulating a theory of it. The era of sail
boats, it has often been pointed out, was already drawing to
a close just as the theory of airfoils and lift was being formu-
lated—the [very] theory that, at least at the present time, best
explains how those sailboats worked. However there are a
number of reasons why such an approach may be ruled out
in the present case. For one thing, in constructing a reflective
calculus one must support arbitrary levels of meta-knowledge
and self-modelling, and it is self-evident that confusion and
complexity will multiply unchecked when one adds such fa-
cilities to an only partially understood formalism. It is simply
likely to be unmanageably complicated to attempt to build a
self-referential system unaided by the clarifying structure of a
prior theory. The complexities surrounding the use of apply in
Lisp (and the caution with which it has consequently come to
be treated) bear witness to this fact. However there is a more
serious problem. If one subscribes to the knowledge represen-
tation hypothesis, it becomes an integral part of developing
self-descriptive systems to provide, encoded within the rep-
resentational medium, an account of (roughly) the syntax, se-
mantics, and reasoning behaviour of that formalism. In other
words, if we are to build a process that “knows” about itself:
and if we subscribe to the view that knowing is representational,
then we are committed to providing that system with a repre-
sentation of the self-knowledge with which we aim to endow it.
That is, we must have an adequate theories of computational
representation and reflection explicitly formulated, since an en-
coding of that theory is mandated to play a causal role as an actual
ingredient in the reflective device.

Knowledge of any sort—and self-knowledge is no excep-
tion—is always theory relative. The representation hypothesis
implies that our theories of reasoning and reflection must be
explicit. We have argued that this is a substantial, if widely ac-

26 Indiscrete Affairs · I

cepted, hypothesis. One reason to find it plausible comes from
viewing the entire enterprise as an attempt to communicate
our thought patterns and cognitive styles—including our re-
flective abilities—to these emergent machines. It may at some
point be possible for understanding to be tacitly communi-
cated between humans and system they have constructed. In
the meantime, however, while we humans might make do with
a rich but unarticulated understanding of computation, repre-
sentation, and reflection, we must not forget that computers
do not [yet] share with us our tacit understanding of what
they are.

A14

 3b · Dissertation — Introduction (V0.80)

 27

 Annotations1

a1 5/-1:6/1 A brief discussion of Mantiq (including a note on the provenance of
the name) is provided in §1 of the Cover to this chapters 3a–3c.

It is not clear to me now (2012), however, from notes that were
written about Mantiq at the time, that the description in the text
is entirely accurate. In particular, the phrase “in which what hap-
pened took effect in virtue of declarative descriptions of what was
to happen” (5/-1/-2:6/0/1) conveys the untenable suggestion that all
Mantiq structures would have only declarative force. As is clear from
philosophy of language—to say nothing of the Carroll paradoxes—
statement alone is not by itself sufficient to engender action. In ad-
dition, as in 3Lisp, the aim for Mantiq was to have events, struc-
tures, and phenomena co-exist on an equivalent ontological plane
(though at a different semantic level!) with descriptions of those
self-same events, structures, and phenomena—i.e., without either
having ontic priority (a bit of a conceit).

It is true, though, that the emphasis in Mantiq was to be on de-
scription—something for which I still believe support (and theory) to
be woefully missing in computational languages. For numerous rea-
sons (cf. «where?») I do not believe rdf, xml, owl, etc., come close
to filling the bill.

a2 6/1/4 To minimise confusion I explicitly flag chapter references that refer
to chapters in the dissertation, of which only chapter 1 is included in
this Volume,5 so as to distinguish them from references to chapters
in the present volume.

a3 6/1/-6:-3 This project of developing an architecture in which structural iden-
tity2 could serve as a proxy for intensional identity was one of Man-
tiq’s primary design aims. It was also something on which I had
spent a lot of time working, before 3Lisp was designed. The basic
idea was to define a rather abstract conception of a structural field
(rather like an abstract memory), implemented by a background
by concurrent relaxation algorithms, so that structural identity (of
the sort that would be tested by an analogue of Lisp’s eq) would
mimic identity of meaning on a plausible if necessarily relatively fine-
grained way. For example: internal analogues of such expressions as

1. References are in the form page/paragraph/line; with ranges (of any type) indi-
cated as x:y. For details see the explanation on p.•
2. The text says ‘syntactic’ identity—but it is very clear that I meant the directly-
inspectible identity of internal computational structures.

28 Indiscrete Affairs · I

(λy . y+3) and (λx . 3+x) would be token (not just type) identical.
There are legions of issues lurking behind this suggestion—in-

cluding, for example, concerns of the sort articulated in “The Cor-
respondence Continuum” (ch. 11), that different granulaties of in-
tensional identity are appropriate in different circumstances. Part
of what I had explored, in the emerging Mantiq design, was the ex-
ploitation of reflection to obtain more or less fine-grained access to
these sorts of structural granularity, in line with the overall philoso-
phy of providing contextually sensitive ways of making things more
or less explicit (so that operator order, for example, or the forms of
equivation addressed in de Morgan’s laws, could be “seen” or “not
seen,” depending on purpose and perspective, in a flexible way).

a4 6/-1/-3:-2 In the end I did define a reflective version of the λ-calculus, in an
attempt to communicate to Jon Barwise why I thought reflection
was interesting, and how it worked. See §6 of the Introduction and
annotation a41 in ch. 4.

a5 7/0/-3:-1 As indicated here, the aim of developing 3Lisp was to work out a se-
mantical framework that integrated an understanding of reference
and description into an account of computational activity. It was
because of this motivating purpose that I felt that the “delivery” of
3Lisp failed, since even though the notion of reflection was positively
received, the semantical framework on which it was based was ig-
nored. Cf. the discussion in the Introduction, especially at …… in
§1, and in §6, where among other things I suggest that this failure
stemmed from untenable ontological as well as semantical presup-
positions underlying the understanding of reference that I employed
in 3Lisp’s design, and that still remains our default theoretical ap-
proach to these subjects.

a6 7/-1/-5:-4 It is the claim that writing programs requires that one make one’s
ideas completely explicit with which I was disagreeing. I certainly be-
lieved (and still do today) that constructing a program requires a
kind of explicitisation that is extraordinarily demanding—far more
so than those who have not programmed are ever likely to realise.

a7 11/1/-8:-6 Though endorsing the formality condition here, my belief in its truth
(of real-world computation) had already begun to erode. By the
time that “Reflection and Semantics in Lisp” (ch. 4) was published
in 1983, I was close to be willing to deny its truth (though I continue

 3b · Dissertation — Introduction (V0.80)

 29

to believe that it is based on a profoundly deep insight). See annota-
tion a15 in ch. 4, and Volume ii of aos.

a8 14/0/4 ‘Sceptical’ is the operative word. At the time I was neither prepared
to endorse or to deny the representational view, in spite of its ubiq-
uitous allegiance in Artificial Intelligence at the time (Haugeland’s
gofai did not come in for resounding critique until later in the de-
cade). See “Registration and Registration” in Indiscrete Affairs, Vol. ii.

a9 15/0/4 For discussion of the notion of a dual calculus see •1/-1/-5:-2 and
•21/0:1 in ch. 3b.

a10 18/1 I was less clear on these issues here than I should have been. Cf.
the discussions in «ref where ingredient and specificational views are
talked about, etc.; certainly including ch. 4 and 100 Billion Lines». In
addition, there are issues about the relation between personal and
sub-personal levels (cf. annotation a26 of ch. 3b, p •115) which I later
came to recognise as profoundly important, but to which in 1981 I
was not appropriately aware.

a11 18/-1/-2:-1 In 1980, the year before the dissertation was written, I had presented
a response to Charles Taylor’s paper “Cognitive Psychology.”3 One
of Taylor’s points was that human life is drenched in a background
of inexorable implicitness, which he took to be antithetical to (what
he took to be) the intrinsic explicitness of computation. While tak-
ing no exception to his account of human life, I disagreed with his
claim that computation is anything like as explicit as he suggested.
Ever since I had started programming in the late 1960s, I had had
(and still have) a deep sense that there was far more that is tacit and
implicit in the computational realm than is commonly recognised in
the reigning mythos.

a12 19/-15:6 The pdp-10, a mainframe computer built by the Digital Equipment
Corporation (dec), formed the backbone of the computational re-
sources at the artificial intelligence laboratories at mit, Stanford,
and Carnegie-Mellon. Among other things, it was the computer on
which time-sharing was initially developed; it was also the machine
on which Lisp ran, in which all early ai projects were implemented.
As a result, it loomed large in the imagination of early ai theorists.

a13 22/1/6:7 This passage, too (as well as 18/1; see a10, above), would have been

3. The response, entitled “The Significance of Computational Psychology,”
was presented on March 25, 1980 at a Conference on Artificial Intelligence
and Philosophy, held at the Center for Advanced Studies in the Behavioral
Sciences in Stanford, California.

30 Indiscrete Affairs · I

better if framed in terms of a personal/subpersonal distinction. Cf.
annotation a26 of ch. 3b, p •115.

a14 22/1/8:13 «Refer to general discussions in Intro? Also point forward to 100 Bil-
lion»

a15 The word ‘yet,’ present in drafts written right up until the point of-
submission, was for unknown reasons deleted in the submitted ver-
sion.

31 Indiscrete Affairs · I

 Procedural Relection in Programming Languages

 3b Introduction

The successful development of a general reflective calculus
based on the knowledge representation hypothesis will de-
pend on the prior solution of three problems:

1. The provision of a computationally tractable and epis-
temologically adequate descriptive language;

2. The formulation of a unified theory of computation
and representation; and

3. The demonstration of how a computational system
can reason effectively and consequentially about its
own inference processes.

The first of these issues is the collective goal of present knowl-
edge representation research; though much studied, it has met
with only partial success. The problems involved are enor-
mous, covering such diverse issues as adequate theories of in-
tensionality, methods of indexing and grouping representation
al structures, and support for variations in assertional force. In
spite of its centrality, however, it will not be pursued here, in
part because it is so ill-constrained. The second, though it is
occasionally acknowledged to be important, is a much less well
publicised issue, having received (so far as I know) almost no
direct attention. As a consequence, every representation sys-
tem proposed to date exemplifies what I will call a dual-calcu-

lus approach: a procedural calculus (usually Lisp) is conjoined
with a declarative formalism (an encoding of predicate logic,
frames, etc.). Even such purportedly unified systems as Prolog1
can be shown to manifest this dual-calculus structure. I will

a1

a2

1. Prolog has been presented in a variety of papers; see for example Clark
and McCabe (1979), Roussel (1975), and Warren et al. (1977). The con-
ception of logic as a programming language (with which I radically dis-
agree) is presented in Kowalski (1974 and 1979).

a3

32 Indiscrete Affairs · I

in passing suggest that this dual-calculus style is unnecessary
and indicative of serious shortcomings in our conception of
the representational endeavour. However this issue too will be
largely ignored.

In this dissertation my focus instead will be on the third
problem: the question of making the inferential or interpre-
tive aspects of a computational process themselves accessible
as a valid domain of reasoning. I will show how to construct
a computational system whose active interpretation is con-
trolled by structures themselves available for inspection,
modification, and manipulation, in ways that allow a process
to shift smoothly between dealing with a given subject or task
domain, and dealing with its own reasoning processes over
that domain. In computational terms, the question is one of
how to construct a program able to reason about and affect
its own interpretation—i.e., of how to define a calculus with a
reflectively accessible control structure.

 1a General Overview
The term “reflection” does not name a previously well-defined
question to which I propose a particular solution (although
logic’s reflection principles are not unrelated). Before I can pres-
ent a theory of what reflection comes to, and how it can be
demonstrated, therefore, I will have to give an account of what
reflection is. In the next section, by way of introduction, I will
identify six characteristics that I take to distinguish all reflec-
tive behaviour. Then, since I will be primarily concerned with
computational reflection, I will sketch the model of compu-
tation on which the analysis will be based, and will set the gen-
eral approach to reflection to be adopted into a computational
context. In addition, once a working vocabulary of computa-
tional concepts has been set out, I will be able to define what
I will mean by procedural reflection—an even smaller and
more circumscribed notion than computational reflection in

a4

 3b · Dissertation — Introduction (V0.80)

 33

general. All of these preliminaries are necessary in order to en-
able the formulation of an attainable set of goals.

Thus prepared, I will set forth on the analysis itself. As a
technical device, over the course of the dissertation I will de-
velop three successive dialects of Lisp to serve as illustrations,
and to provide a technical ground in which to work out in de-
tail the theory of reflection to be proposed. I should say at the
outset, however, that this focus on Lisp should not mislead
the reader into thinking that the basic reflective architecture
I propose—or the principles endorsed in its design—are in
any important sense Lisp specific. Lisp was chosen because it
is simple, powerful, and uniquely suited for reflection in two
ways: it already embodies protocols whereby programs are
represented in first-class accessible (data) structures, and it is
a convenient formalism in which to express its own meta-the-
ory—especially given that I will use a variant of the λ-calculus
as a mathematical meta-language (this convenience holds es-
pecially in a statically scoped dialect of the sort that I will ulti-
mately adopt). Nevertheless, as I will discuss in the concluding
chapter [of the dissertation], it would be possible to construct
a reflective dialect of Fortran, Smalltalk, or any other proce-
dural calculus, by pursuing essentially the same approach as I
will demonstrate here for Lisp.

The first Lisp dialect (called 1Lisp) will be an example
intended to summarise current practice, primarily for com-
parison and pedagogical purposes. The second (2Lisp) differs
rather substantially from 1Lisp, in that it is modified with ref-
erence to a theory of declarative denotational semantics (i.e.,
a theory of the denotational significance of s-expressions)
formulated independent of the behaviour of (what computer
science calls) the “interpreter.” The interpreter is then subse-
quently defined with respect to this theory of attributed se-
mantics, so that the result of processing of an expression—i.e.,
the value of the function computed by the basic interpretation

a6

a5

34 Indiscrete Affairs · I

process—is a normal-form co-designator of the input expres-
sion. I will call 2Lisp a semantically rationalised dialect, and
will argue that it makes explicit much of the understanding of
Lisp that tacitly organises most programmers’ understanding
of Lisp but that has never been made an articulated part of
Lisp theory. Finally, a procedurally reflective Lisp called 3Lisp
will be developed, semantically and structurally based on
2Lisp, but modified so that reflective procedures are support-
ed, as a vehicle with which to engender the sorts of procedural
reflection we will by then have set as our goal. 3Lisp differs
from 2Lisp in a variety of ways, of which the most important
is the provision, at any point in the course of the computation,
for a program to reflect and thereby obtain fully articulated “de-
scriptions,” formulated with respect to a primitively endorsed
and encoded theory, of the state of the interpretation process
that was in effect at the moment of reflection. In this particu-
lar case, this will mean that a 3Lisp program will be able to
access, inspect, and modify standard 3Lisp normal-form des-
ignators of both the environment and continuation structures
that were in effect a moment before.

More specifically, 1Lisp, like Lisp 1.5 and all Lisp dialects
in current use, is at heart a first-order language, employing
meta-syntactic facilities and dynamic variable scoping pro-
tocols to partially mimic higher-order functionality. Because
of its metasyntactic powers (paradigmatically exemplified
by the primitive quote), 1Lisp contains a variety of inchoate
reflective features, all of which I will examine in some detail:
support for metacircular interpreters, explicit names for the
primitive processor functions (eval and apply), the ability to
mention program fragments, protocols for expanding macros,
and so on and so forth. Though I will ultimately criticise much
of 1Lisp’s structure (and its underlying theory), I will docu-
ment its properties in part to serve as a contrast for the sub-
sequent dialects, and in part because, being familiar, 1Lisp can
serve as a base in which to ground the analysis.

a7

a8

 3b · Dissertation — Introduction (V0.80)

 35

After introducing 1Lisp, but before attempting to construct
a reflective dialect, I will subject 1Lisp to rather thorough se-
mantical scrutiny. This project, and the reconstruction that
results, will occupy well over half the dissertation. The reason
is that the analysis will require a reconstruction not only of
Lisp but of computational semantics in general. I will argue in
particular that it is crucial, in order to develop a comprehen-
sible reflective calculus, to have a semantical analysis of that
calculus that makes explicit the tacit attribution of significance
that I will claim characterises every computational system. I
take this attribution of semantical import to computational
expressions to be prior to any account of what happens to
those expressions: thus I will argue for an analysis of computa-
tional formulae in which declarative import and procedural

consequence are independently formulated. I claim, in other
words, that programming languages are better understood in
terms of two semantical treatments—one declarative, one pro-
cedural—rather than in terms of a single one, as is exemplified
by current approaches (although interactions between them
may require that these two semantical accounts be formulated
in conjunction).

This semantical reconstruction is at heart a comparison
and combination of the standard semantics of programming
languages on the one hand, and the semantics of natural hu-
man languages and of descriptive and declarative languages
such as predicate logic, the λ-calculus, and mathematics, on
the other. Neither will survive intact: the approach I will ul-
timately adopt is not strictly compositional in the standard
sense (although it is recursively specifiable), nor are the declar-
ative and procedural facets entirely separate. In particular, the
procedural consequence of executing a given expression may
affect the subsequent context of use that determines what an-
other expression declaratively designates. Nor are the conse-
quences of this approach minor. For example, I will show that

a9

a11

a10

a12

36 Indiscrete Affairs · I

the traditional notion of evaluation, in terms of which all Lisps
to date have been defined, is both confusing and confused, and
must be separated into independent notions of reference and
simplification. I will be able to show, in particular, that 1Lisp
“evaluator” de-references some expressions (such meta-syntac-
tic terms as (quote x), for example), and does not dereference
others (such as the numerals and t and nil). I will argue in-
stead for what I will call a semantically rationalised dialect,
in which the simplification and reference primitives are kept
strictly distinct.

The basic thesis on which this work depends is that seman-
tical cleanliness (along the lines suggested above) is by far the
most important pre-requisite to any coherent treatment of
reflection. However, as well as advocating semantically rational-
ised computational calculi, in the Lisp case I will also espouse
an aesthetic I call category alignment, by which I mean that
there should be a strict category-category correspondence
across the four major axes in terms of which a computation
calculus is analysed: (i) notation; (ii) abstract structure; (iii)
declarative semantics; and (iv) procedural consequence (a
mandate satisfied by no extant Lisp dialect). In particular, in
the dialects I design and present here, I will insist: that each
notational class be parsed into a distinct structural class; that
each structural class be treated in a uniform way by the primi-
tive processor; that each structural class serve as the normal-
form designator of each semantic class; and so forth.

Category alignment is an aesthetic with consequence. I will
show that the 1Lisp programmer (i.e., all existing Lisp pro-
grammers) must in certain situations resort to meta-syntactic
machinery merely because 1Lisp fails to satisfy this mild re-
quirement (in particular, 1Lisp lists, which are themselves a
derivative class formed from some pairs and one atom, serve
semantically to encode both function applications and enu-
merations). Though it by no means has the same status as se-

a13

 3b · Dissertation — Introduction (V0.80)

 37

mantical hygiene, categorical elegance will also prove almost
indispensable, especially from a practical point of view, in the
drive towards reflection.

Once these theoretical positions have been formulated, I
will be in a position to design 2Lisp. Like Scheme and the
λ-calculus, 2Lisp is a higher-order formalism: consequently, it
is statically scoped, and treats the function position of an ap-
plication as a standard extensional position. 2Lisp is of course
formulated in terms of the rationalised semantics, according
to which declarative semantics must be formulated for all ex-
pressions prior to, and independent of, the specification of
how they are treated by the primitive processor. Consequently,
and unlike Scheme, the 2Lisp processor is based on a regimen
of normalisation, according to which each expression is taken
into a normal-form designator of its referent, where the notion
of normal-form is defined in part with reference to the seman-
tic type of the symbol’s designation, rather than (as in the case
of the λ-calculus) in terms of the further non-applicability of
a set of syntactic reduction rules.

2Lisp’s normal-form designators are environment inde-
pendent and side-effect free; thus the concept of a closure can
be reconstructed as a normal-form function designator. Since
normalisation is a form of simplification, and is therefore des-
ignation-preserving, meta-structural expressions (terms that
designate other terms in the language) are not de-referenced
upon normalisation, as they are when evaluated. I therefore
call the 2Lisp processor semantically flat, since it stays at a
semantically fixed level (although explicit referencing and de-
referencing primitives are also provided, to facilitate explicit
shifts in level of designation).

3Lisp is straightforwardly defined as an extension of 2Lisp,
with respect to an explicitly articulated procedural theory of

a14

a15

a16

38 Indiscrete Affairs · I

3Lisp embedded in 3Lisp structures. This embedded theory,
called the reflective model, though superficially resembling
a metacircular interpreter (as shown by a glance at the code,
given in figure 15 on p. ·99), is causally connected to the work-
ings of the underlying calculus in critical and primitive ways.
The reflective model is similar in structure to the procedural
fragment of the meta-theoretic characterisation of 2Lisp that
was encoded in the λ-calculus: it is this incorporation into a
system of a theory of its own operations that makes 3Lisp, like
any possible reflective system, inherently theory relative. For
example, whereas environments and continuations will up until
this point have been theoretical posits, mentioned only in the
theorist’s meta-language as a way of explaining Lisp’s behav-
iour, in 3Lisp such entities move from the semantical domain
of the external theoretical meta-language into the semantical
domain of the object language, in such a way that environment
and continuation designators emerge as part of the primitive
behaviour of 3Lisp protocols.

More specifically, arbitrary 3Lisp reflective procedures

can bind as arguments (designators of) the continuation and
environment structure of the interpreter that would have been
in effect at the moment the reflective procedure was called, had
the machine been running all along in virtue of the explicit
interpretation of the prior program, mediated by the reflective
model. Furthermore, by constructing and/or modifying these
designators, and resuming the process below, such a reflective
procedure may arbitrarily control the processing of programs
at the level beneath it. Because reflection may recurse arbi-
trarily, 3Lisp is most simply defined in terms of the following
ideal:

 An infinite tower of 3Lisp processes, each engendering the
process immediately below, in virtue of running a copy of the
reflective model.

a17

a18

a19

 3b · Dissertation — Introduction (V0.80)

 39

Under such an account, the use of reflective procedures
amounts to running simple procedures at arbitrary levels in
this reflective hierarchy. Both a straightforward implementa-
tion and a conceptual analysis are provided to demonstrate
that such a machine is nevertheless finite.

3Lisp’s reflective levels are not unlike the levels in a typed
logic or set theory, although of course each reflective level
contains an omega-order untyped computational calculus
essentially isomorphic to (the extensional portion of) 2Lisp.
Reflective levels, in other words, are at once stronger and more
encompassing than are the order levels of traditional systems.
The locus of agency in each 3Lisp level, on the other hand, that
distinguishes one computational level from the next, is a no-
tion without precedent in logical or mathematical traditions.

The architecture of 3Lisp allows us to unify three concepts of
traditional programming languages that are typically indepen-
dent (three concepts we will have explored separately in 1Lisp):

1. The ability to support metacircular interpreters;
2. The provision of explicit names for the primitive in-

terpretive procedures (eval and apply in standard Lisp
dialects); and

3. The inclusion of procedures that access the state of
the implementation (usually provided as part of a pro-
gramming environment, for debugging purposes).

I will show how all such behaviours can be defined within a
pure version of 3Lisp (i.e., independent of implementation),
since all aspects of the state of the 3Lisp interpretation process
are available, with sufficient reflection, as objectified entities
within the 3Lisp structural field.

The dissertation concludes by drawing back from the details
of Lisp development, in order to show how the techniques

40 Indiscrete Affairs · I

employed in this one particular case could be used in the
construction of other reflective languages—reflective dialects
of current formalisms, or other new systems built from the
ground up. I will show, in particular, how this approach to
reflection may be integrated with notions of data abstraction
and message passing—two (related) concepts commanding
considerable current attention, that might seem on the surface
incompatible with the notion of a system-wide declarative se-
mantics.Fortunately, I will be able to show that this early im-
pression is false—that procedurally reflective and semantically
rationalised variants on these types of languages could be read-
ily constructed as well.

Besides the basic results on reflection, there are a variety
of other lessons to be taken from the investigation, of which
the integration of declarative import and procedural conse-
quence in a unified and rationalised semantics is undoubtedly
the most important. The rejection of evaluation, in favour of
separate simplification and de-referencing protocols, is the
major, but not the only, consequence of this revised semantical
approach. The matter of category alignment, and the constant
question of the proper use of metastructural machinery, while
of course not formal results, are nonetheless important per-
meating themes. Finally, the unification of a variety of prac-
tices that until now have be treated independently—macros,
metacircular interpreters, eval and apply, quotation, implemen-
tation-dependent debugging routines, and so forth—should
convince the reader of one of the dissertations most important
claims: procedural reflection is not a radically new idea; tenta-
tive steps in this direction have been taken in many areas of
current practice. The present contribution—fully in the tradi-
tional spirit of rational reconstruction—is merely one of mak-
ing explicit what we all already knew.

 • • •

a20

 3b · Dissertation — Introduction (V0.80)

 41

I conclude this brief introduction with three footnotes.
First, given the flavour of the discussion so far, the reader

may be tempted to conclude that the primary emphasis of this
report is on procedural, rather than on representational, con-
cerns (an impression that will only be reinforced by a quick
glance through later [dissertation] chapters). This impression
is in part illusory; as I will explain at a number of points. these
topics are pursued in a procedural context because it is simpler
than attempting to do so in a poorly understood representa-
tional or descriptive system. All of the substantive issues, how-
ever, have their immediate counterparts in the declarative as-
pects of reflection, especially when such declarative structures
are integrated into a computational framework. This investi-
gation has been carried on with the parallel declarative issues
kept firmly in mind; the attribution of a declarative semantics
to Lisp s-expressions will also reveal my representational bias.
As I mentioned in the preface, the decision to first explore re-
flection in a procedural context should be taken as method-
ological, rather than as substantive. Furthermore, it is towards
a unified system that I ultimate want to aim. One of the morals
underlying this reconstruction is that the boundaries between
these two types of calculus should ultimately be dismantled.

Second. as this last comment suggests, and as the unified
treatment of semantics betrays, I consider it important to
unify the theoretical vocabularies of the declarative tradition
(logic, philosophy, and to a certain extent mathematics) with
the procedural tradition (primarily computer science). I view
the semantical approach adopted here as but a first step in that
direction; as suggested in the first paragraph, a fully unified
treatment remains an as-yet unattained goal. Nonetheless, I
have expended some effort in the work reported here to de-
velop and present a single semantical and conceptual position
that draws on the insights and techniques of both of these dis-
ciplines.

a21

a22

42 Indiscrete Affairs · I

Third and finally, as the very first paragraph of this chapter
suggests, the dissertation is offered as the first step in a general
investigation into the construction of generally reflective com-
putational calculi to be based on more fully integrated theories
of representation and computation. In spite of its reflective
powers, and in spite of its declarative semantics, 3Lisp cannot
properly be called fully reflective, since 3Lisp structures do not
form a descriptive language (nor would any other procedurally
reflective programming language that might be developed in
the future, based on techniques set forth here, have any claim
to the more general term). This is not so much because the
3Lisp structures lack expressive power (although 3Lisp has no
quantificational operators, implying that even if it were viewed
as a descriptive language it would remain algebraic), but rather
because 3Lisp expressions are devoid of assertional force. There
is, in brief, no way to say anything in such a formalism. One can
set x to 3, in 3Lisp or any other procedural (i.e., programming)
language; one can test whether x is 3; but one cannot say that
x is 3. Nevertheless, I contend that the insights won on the be-
half of 3Lisp will ultimately prove useful in the development
of more radical, generally reflective systems.

In sum, I hope to convince the reader that, although it will
be of some interest on its own, 3Lisp is only a corollary of the
major theses adopted in its development.

 1b The Concept of Reflection
In this section I will look more carefully at the term “reflec-
tion,” both in general and in the computational case, and also
specify what I would consider an acceptable theory of such a
phenomenon. The structure of the solution I will eventually
adopt will be presented only in §1·e, after discussing in §1·c the
attendant model of computation on which it is based. and in
§1·d the conception of computational semantics to be adopted.
Before presenting any of that preparatory material, however, it
helps to know where we are headed.

 3b · Dissertation — Introduction (V0.80)

 43

 1b·i The Reflection and Representation Hypotheses
In the prologue I sketched in broad strokes some of the roles
that reflection plays in general mental life. In order to focus
the discussion, this section consider in more detail what I will
mean by the more restricted phrase computational reflection.
On one reading this term might refer to a successful computa-
tional model of general reflective thinking. For example, if you
were able to formulate what human reflection comes to (more
precisely than I have been able to do), and were then able to
construct a computational model embodying or exhibiting
such behaviour, you would have some reason to claim that you
had demonstrated computational reflection, in the sense of a
computational process that exhibited authentic reflective activity.

Though I have undertaken this work with this larger goal
in mind, my use of the phrase is more modest, in two impor-
tant ways.

First, in this dissertation I take no stand on the question of
whether computational processes are able to “think” or “reason”
at all, in, as it were, their own right. Certainly it would seem
that most of what we take computational systems to do is at-
tributed, in a way that is radically different from the situation
regarding our interpretations of the actions of other people.
In particular, humans are first-class bearers of what is called
semantic originality: they themselves are able to mean, with-
out some observer having to attribute meaning to them. Com-
putational processes, on the other hand, are at least not yet
semantically original; to the extent they can be said to mean or
refer at all, they do so derivatively, in virtue of some human
finding that a convenient description (I duck the question as
to whether it is a convenient truth or a convenient fiction).2 For
example, if, as you read this, you rationally and intentionally
say “I am now reading section 1b·i,” you succeed in referring to
this section, without the aid of attendant observers. You do

2. For a discussion of the semantical properties of computational sys-
tems see for example Fodor (1980), Fodor (1978), and Haugeland (1978).

a23

44 Indiscrete Affairs · I

so because we define the words that way; reference and meaning
and so on are not just paradigmatically but definitionally what
people do. In other words your actions are the definitional lo-
cus of reference; the rest is hypothesis and falsifiable theory. If
on the other hand I “inquire” of my home computer as to the
address of a friend’s farm. and it “tells me” that it is on the west
coast of Scotland, the computer has not referred to Scotland
in any full-blooded sense—it hasn’t a clue as to what or where
Scotland is. Rather, it has merely typed out an address that is
probably stored in an ascii code somewhere inside it, and I
supply the reference relationship between that spelled word
and the country in the British Isles.

The reflection hypothesis spelled out in the prologue, about
how computational models of reflection might be constructed,
embodied this cautionary stance: I said there that in as much
as a computational process can be constructed to reason at all, it
could be made to reason reflectively in a certain fashion. Thus
I will take the topic of computational reflection to be restrict-
ed to those computational processes that, for similar purposes,
we find it convenient to describe as reasoning reflectively. In sum,
I avoid completely the question of whether the “reflectiveness”
embodied in our computational models is authentically borne,
or derivatively ascribed.

Setting aside worries about semantic originality is one re-
duction in scope; I also adopt another. Again, in the prologue,
I spoke of reflection as if it encompassed contemplative con-
sideration not only of one’s self but also of one’s world (and
one’s place therein). While I will discuss the relationship be-
tween reflection and self-reference in more detail below, it is
important to acknowledge that the focus of this investigation
is almost entirely on the “selfish” part of reflection: on what it is
to construct computational systems able to deal with their own
ingredient structures and operations as explicit subject matters.

The reasons for this constraint are worth spelling out. The

a24

a25

 3b · Dissertation — Introduction (V0.80)

 45

restriction might seem to arise for simple reasons, such as that
this is an easier and better-constrained subject matter (I cer-
tainly do not consider myself in a position to postulate models
of thinking about external worlds). But in fact the restriction
arises for deeper reasons, again having to do with the reflec-
tion hypothesis. In the architectures I develop, I consider only
internal or interior processes, able to reflect on interior struc-
tures, which is the only world that those internal processes
conceivably can have any access to. Lisp processors (interpret-
ers), in particular, have no access to anything except fields of
s-expressions; they do not interact with the world directly, but
rather in virtue of running programs, engender more complex
processes that interact with the world.

This “interior” sense of language processors interacts cru-
cially with the reflection hypothesis, especially in conjunction
with the representation hypothesis. Not only can we restrict
to our attention to ingredient processes “reasoning about”
(computing over. whatever) internal computational structures,
we can restrict our attention to processes that shift their (ex-
tensional) attention to meta-structural terms. For consider: if it
turns out that I am a computational system, consisting of an
ingredient process p manipulating formal representations of
my knowledge of the world, then according to the representa-
tion hypothesis, when I think, say, about Virginia Falls on the
Nahanni River in northern Canada, my ingredient processor
p is manipulating representations that are about Virginia Falls.
Suppose. then, that I back off a step and comment to myself
that whenever I should be writing another sentence I have a
tendency instead to think about Virginia Falls. What do we
suppose that my processor p is doing now? Presumably (“pre-
sumably”, at least, according to the Knowledge Representation
Hypothesis. which, it is important to reiterate, we are under
no compulsion to believe) my processor p is now manipulating
representations of my representations of Virginia Falls. In other

46 Indiscrete Affairs · I

words, because we are focused on the behaviour of interior process-
es, not on compositionally constituted processes, our exclusive
focus on self-referential aspects of those processes is all we can
do (given our two governing hypotheses) to uncover the struc-
ture of constituted, genuine reflective thought.

The same point can be put another way. The reflection
hypothesis docs not state that, in the circumstance just de-
scribed, p will reflect on the knowledge structures representing
Virginia Falls (in some weird and wondrous way)—this would
be an unhappy proposal, since it would not offer any hope of
an explanation of reflection. On pain of circularity, reflective
behaviour—the subject matter to be explained—should not
occur in the explanation. Rather, the reflection hypothesis is
at once much stronger and more tractable (although perhaps
for that very reason less plausible): it posits, as an explanation
of the mechanism of reflection, that the constituent interior
processes compute over a different kind of symbol. The most
important feature of the reflection hypothesis, in other words,
is its tacit assumption that the computation engendering re-
flective reasoning, although it may be over a different kind of
structure, is nonetheless similar in kind to the sorts of compu-
tation that regularly proceed over normal structures. (In this
way it makes good on the background project of naturalising
reflection.)

In sum, it is methodological allegiance to the Knowledge
Representation Hypothesis, rather than a limited interest
in introspection, that underwrites my self-referential stance.
Though I will not discuss this meta-theoretic position further,
it is crucial that it be understood, for it is only because of it
that I have any right to call this inquiry a study of reflection,
rather than a (presumably less interesting) study of computa-
tional self-reference.

a26

a27

a28

 3b · Dissertation — Introduction (V0.80)

 47

 1b·ii Reflection in Computational Formalisms
Turn, then, to the question of what it would be to make a com-
putational process reflective in the sense just described.

At its heart, the problem derives from the fact that in tra-
ditional computational formalisms the behaviour and state of
the interpretation process are not accessible to the reasoning
procedures: the interpreter forms part of the tacit background
in terms of which the reasoning processes work. Plus, in the
majority of programming languages, and in all representation
languages, only the uninterpreted data structures lie within the
reach of a program. A few languages, such as Lisp and Snobol,
extend this basic provision by allowing program structures to
be examined, constructed, and manipulated as first class enti-
ties. What has never before been provided is a high level lan-
guage in which the process that interprets those programs is
also visible and subject to modification and scrutiny. Therefore
such matters as whether the interpreter is using a depth-first
control strategy, whether free variables are dynamically scoped,
how long the current problem has been under investigation, or
what caused the interpreter to start up the current procedure,
remain by and large outside the realm of reference of standard
representational structures. One way in which this limitation
is partially overcome in some programming languages is to al-
low procedures access to the structures of the implementation
(examples: mdl, Interlisp, etc.3), although such a solution is
inelegant in the extreme, defeats portability and coherence,
lacks generality, and in general exhibits a variety of misfeatures
that I will examine in due course. In more representational or
declarative contexts no such mechanism has been demonstrat-
ed, although a need for some sort of reflective power has ap-
peared in a variety of contexts (such as for overriding defaults,
gracefully handling contradictions, etc.).

A striking example comes up in problem-solving: the issue

3. Such facilities as are provided in mdl are described in Galley and
Pfister (1975); those in Interlisp, in Teitelman (1978).

a29

48 Indiscrete Affairs · I

is one of enabling simple declarative statements to be made
about how the deduction operation should proceed For ex-
ample, it is sometimes suggested that a default should be im-
plemented by a deductive regime that accepts inferences of
the following non-monotonic variety (i.e., if “not p” cannot be
proved, then deduce p):

 [1]




Though it is not difficult to build a problem solver that em-
bodies some such behaviour (at least on some computable
reading of “not provable”), one typically does not want such
a rule to be obeyed indiscriminately, independent of context
or domain. There are, in other words, usually constraints on
when such inferences are appropriate—having to do with,
say, how crucially the problem needs a reliable answer, or with
whether other less heuristic approaches have been tried first.
What people writing problem-solver systems have wanted is a
way to write down specific instances of something like [1] that
explicitly refer both to the subject domain and to the state of
the deductive apparatus, which, in virtue of being written down,
lead that inference mechanism to behave in the way described.

Particular examples are easy to imagine. Thus consider a
computational process designed to repair electronic circuits.
One can imagine that it would be useful to have inference rules
of the following sort: “Unless you have been told that the power
supply is broken. you should assume that it works”, or, “You should
make checking capacitors your first priority, since they are more
likely than are resistors to break down”. Furthermore, it would
be good to ensure that such rules could be modularly and flex-
ibly added and removed from the system, without each time
requiring surgery on the inner constitution of the inference
engine. Though we are skirting close to the edge of an infinite
regress, it is clear that something like this kind of protocol is a

 3b · Dissertation — Introduction (V0.80)

 49

natural part of normal human conversation. From an intuitive
point of view it seems perfectly reasonable to say: By the way,
if you ever want to assume p, it would be sufficient to establish that
you cannot prove its negation. The question is whether we can
make formal sense out of this intuition.

It is clear that the problem is not so much one of what to
say, but of how to say it (to some kind of theorem-prover, for
example) in a way that on the one hand does not lead to an
infinite regress, and that on the other genuinely affects its be-
haviour. All sorts of technical question arise. It is not obvious
what language to use, for example; or even to whom such a
statement should be directed. Suppose, for example, that we
were supplied with a monotonic natural-deduction based
theorem prover for first order logic. Could we supply it with
[1] as an ordinary material implication? Certainty not. At least
in the form given above, it is not even a well-formed sentence.
There are various ways we could encode it as a sentence—one
way would be to use set theory, and to talk explicitly about
the set of sentences derivable from other sentences, and then
to say that if the sentence ‘¬p’ is not in a certain set, then ‘p’
is. The problem is that while such a sentence might contrib-
ute to a model of the kind of inference procedure we desire, in
any ordinary theorem prover simply adding it to the stock of
implication that it has to work with would not thereby cause
the inference mechanism itself behave non-monotonically in the
described way. To do this would not be to construct a non-
monotonic reasoning system, but rather to build a monotonic
one prepared to reason about a non-monotonic one. While
such a formulation might be of interest in the specification
of the constraints a reasoning system must honour (a kind of
“competence theory” for non-monotonic reasoning4), it would
not help us, at least on the face of things, with the question of
how a system using defaults might actually be deployed. An-
other option, of course, would be to build a non-monotonic

4. Reiter (1978), McDermott and Doyle (1978), Bobrow (1980).

50 Indiscrete Affairs · I

inference engine from scratch, using expressions like [1] to
constrain its behaviour, along the lines of abstract program
specifications. But this would solve the problem by avoiding
it—the whole question was how to use such comments on
the reasoning procedure coherently within the structures of the
problem-specific application.

Yet another possibility—one I will focus on for a mo-
ment—would be to design a more complex inference mecha-
nism to react appropriately not only to sentences in the stan-
dard object language, but to meta-theoretic expressions of the
form [1]. Although no system of just this sort has been dem-
onstrated, such a program is readily imaginable, and various
dialects of Prolog—perhaps most clearly the ic-prolog of
Imperial College5—are best viewed in this light The problem
with such solutions, however, is their excessive rigidity and in-
elegance, coupled with the fact that they do not really solve
the problem in any case. What a Prolog user is given is not
a unified or reflective system, but a pair of two largely inde-
pendent formal systems: a basic declarative language in which
facts about the world can be expressed, and a separate proce-
dural language, through which the behaviour of the inference
process may be controlled. Although the elements of the two
languages are mixed in a Prolog program, they are best under-
stood as separate aspects. One set (the structure of clauses,
implications, and predicates, the identity of variables, and so
forth) constitutes the declarative language, with the standard
semantics of first-order logic. Another (the sequential order-
ing of the sentences and of the predicates in the premise, the
“consumer” and “producer” annotations on the variables, the
“cut” operator, and so forth) constitute the procedural language.
Of course the flow of control is affected by the declarative as-
pects, but this is just like saying that the flow of control of an
algol program is affected by its data structures.

Thus the claim that to use Prolog is to “program in logic” is

5. Clark and McCabe (1979).

 3b · Dissertation — Introduction (V0.80)

 51

in my view misleading: rather, what happens is that one essen-
tially writes programs in a new (and, as it happens, rather lim-
ited) control language, using an encoding of first-order logic
as the declarative representation language. Of course this is a
dual system with a striking fact about its procedural compo-
nent: all conclusions that can be reached are guaranteed to be
valid implications of prior structures in the representational
field. As mentioned above, however, dual-calculus approaches
of this sort seem ultimately rather baroque, and is certainly
not conducive to the kind of reflective abilities we are after. It
would be far more elegant to be able to say, in the same language
as the target world is described, whatever it was salient to say
about how the inference process was to proceed.

For example, to continue with the Prolog example, one would
like to say both father(benjamin,charles) and cut(clause-13)
or data-consumer(variable-4) in one and the same language,
with both subject to the same semantical and procedural treat-
ment. The increase in elegance, expressive power, and clarity
of semantics that would result are too obvious to belabour:
just a moment’s thought leads to one realise that only a single
semantical analysis would be necessary (rather than two); the
reflective capabilities could recurse without limit (Prolog and
other dual-calculus systems intrinsically consist of just a single
level); a meta-theoretic description of the system would have
to describe only one formal language, not two; descriptions
of the inference mechanism, would be immediately available,
rather than having to be extracted from procedural code; and
so forth.

This ability to pass coherently between two situations—in
the reflective case to have the structures that normally con-
trol the interpretation process be fully and explicitly visible to
(and manipulable by) the reasoning process, and in the other
to allow the reasoning process to sink into them, so that they
may take their natural effect as part of the tacit background

52 Indiscrete Affairs · I

in which the reasoning process works—this ability is a par-
ticular form of reflection that I will call procedural reflection

(“procedural” because I are not yet requiring that those struc-
tures at the same time describe the reasoning behaviours they
engender; that is the larger task not yet taken on). Although
ultimately limited, in the sense that a procedurally reflective
calculus is by no means a fully reflective one, even this more
modest notion is on its own a considerable subject of inquiry.

 1b·iii Six General Properties of Reflection
Given the foregoing sketch of the task, it is appropriate to ask,
before plunging into details, whether we can have any sense in
advance of what form the solution might take. Six properties
of reflective systems can be identified straight away—features
that any ultimate solution should exhibit, however it ends up
being structured and/or explained.

 1b.iii.α Causal connection
First, the notion is one of self-reference, of a causally-connected
kind, stronger than the notion explored by mathematicians
and philosophers over much of the last century. What is need-
ed is a theory of the causal powers required in order for a sys-
tem’s possession of self-descriptive and self-modelling abilities
to actually matter to it—a requirement of substance, since full-
blooded, actual behaviour is our ultimate subject matter, not
simply the mathematical characterisation of formal relation-
ships.

In dealing with computational processes, we are dealing
with artefacts behaviourally defined, after all, unlike systems
of logic, which are functionally defined abstractions that in no
way behave or participate with us in the temporal dimension.
Although any abstract machine of Turing power can provably
model any other—including itself—there can be no sense in
which such self-modelling is even noticed by the underlying

a30

 3b · Dissertation — Introduction (V0.80)

 53

machine (even if we could posit an animus ex machina to do
the noticing). If, on the other hand, our aim is to build a com-
putational system of substantial reflective power, we will have
to build something that is affected by its ability to “think about
itself.” This holds no matter how accurate the self-descriptive
model may be; you simply cannot afford simply to reason
about yourself as disinterestedly and inconsequentially as if
you were someone else.

Similar requirements of causal connection hold of human
reflection. Suppose, for example, that after taking a spill into
a river I analyse my canoeing skills and develop an account
of how I would do better to lean downstream when exiting
an eddy. Coming to this realisation is useful just in so far as
it enables me to improve. If I merely smile in vacant pleasure
at an image of an improved me, but then repeat my ignomini-
ous performance—if in other words my reflective contemplations
have no effect on my subsequent behaviour—then my reflection
will have been in vain. It is crucial, in other words, to make the
move from description to reality. In addition, just as the result
of reflecting has to affect future non-reflective behaviour, so
does prior non-reflective behaviour have to be accessible to re-
flective contemplation; one must equally be capable of moving
from reality to description. It would have been equally futile if,
when I initially paused to reflect on the cause of my dunking,
I had been unable to remember what I had been doing just
before I capsised.

In sum, the relationship between reflective and non-reflec-
tive behaviour must be of a form such that both information
and effect can pass back and forth between them. These re-
quirements will impinge on the technical details of reflective
calculi: we will have to strive to provide sufficient connection
between reflective and non-reflective behaviour so that the
right causal powers can be transferred across the boundary,
without falling into the opposite difficulty of making them

54 Indiscrete Affairs · I

so interconnected that confusion results. (An example is the
issue of providing continuation structures to encode control
flow: we will provide separate continuation structures for each
reflective level, to avoid unwanted interactions, but we will
also have to provide a way in which a designator of the lower
level continuation can be bound within the environment of
the higher one, so that a reflective program can straightfor-
wardly refer to the continuation of the process below it).

The interactions between levels can grow rather complex.
Suppose, to take another example, that you decide at some
point in your life that whenever some type of situation arises
(say, when you start behaving inappropriately in some fash-
ion), that you will pause to calm yourself down, and to review
what has happened in the past when you have let your basic
tendencies proceed unchecked. The dispassionate fellow that
you must now become is one that embodies, in their current
and on-going being, a decision made now at some future point to
reflect. Somehow, without acting in a self-conscious way from
now until such a circumstance arises, you have to make it true
that when the situation does arise, you will have left yourself
in a state that will cause the appropriate reflection to happen
then. By the same token, in the technical formalisms we design,
we have to provide the ability to descend (“drop down”) from a
reflected state to a non-reflected one, having left the base level
system in such a state so that, when certain situations occur in
the future, the system will automatically reflect at that point,
and thereby obtain access to the reasons that were marshalled
in support of the original decision.

 1b.iii.β Theory relativity
Second, reflection has something, although just what remains
to be seen, to do with self-knowledge, as well as with self-ref-
erence—and knowledge, as has often been remarked, is inher-
ently theory-relative (in a way that pure self-reference is not).

a31

 3b · Dissertation — Introduction (V0.80)

 55

Just as one cannot interpret the world except through using
the concepts and categories of a theory, one cannot reflect on
one’s self except in terms of the concepts and categories of a
theory of self. Furthermore, as is the case in any theoretical
endeavour, the phenomena under consideration under-deter-
mine the theory that accounts for them, even when all the data
are to be accounted for. In the more common case, when only
parts of the phenomenal field are to be treated by the theory,
an even wider set of alternative theories emerge as possibili-
ties. In other words, when you reflect on your own behaviour, you
must inevitably do so in a somewhat arbitrary theory-relative way.

One of the mandates must be set for any reflective calculus,
therefore, is that it be provided, represented in its own inter-
nal language, with an (in some appropriate sense) complete
theory of how it is formed and of how it works. Theoretical
entities may be posited by this account that facilitate an ex-
planation of behaviour, even though those entities cannot be
claimed to have a theory-independent ontological existence
in the behaviour being explained. 3Lisp will be provided with
a “theory” of 3Lisp in 3Lisp, for example, reminiscent of the
metacircular interpreter demonstrated in McCarthy’s original
report6 and in the reports of Sussman and Steele7—but caus-
ally connected in novel ways. In providing this primitively sup-
ported reflective model, I adopt a standard account, in which
a number of notions commonly used to describe Lisp play a
central role—such as that of an environment, just mentioned,
and a parallel notion of a continuation. In spite of their famil-
iarity, however, these have historically remained Lisp-external
notions, being used only to describe (and model) Lisp, rather than
figuring as first-class objects internal to the language in any di-
rect sense. It is impossible in a non-reflective Lisp to define a
predicate true only of environments, since environments as
such do not exist in such dialects. Because its reflective ca-

6. McCarthy et al. (1965).
7. Sussman and Steele (1975); Steele and Sussman (1978a).

56 Indiscrete Affairs · I

pacities are defined in terms of an environment and contin-
uation-based theory, the notion of an environment becomes
language-internal to 3Lisp—with environment representing
structures being passed around as first-class entities.

There are other possible Lisp theories, some of which dif-
fer substantially from the one I have chosen. For example, it is
possible to replace the notion of environment altogether (note
that the λ-calculus is explained without any such device). If a
reflective dialect were defined in terms of this alternative the-
oretical account (call such a language 3Lisp′), environments
would no longer be a language internal concept. It would be
likely, however, that this theory would posit other kinds of ob-
ject, or other notions (such as α- and β-reduction), and in vir-
tue of being reflective in 3Lisp′ those notions would become
language-internal. In order to reflect you have to use some
theory and its associated theoretical concepts and entities.

 1b.iii.γ ‘Reflective’ vs. ‘reflexive’
The third general point about reflection regards its name. I
have deliberately chosen the term ‘reflective,’ as opposed to
‘reflexive,’ since there are various senses (other recent research
reports not withstanding8) in which no computational pro-
cess, in any sense I can understand, can succeed in narcissisti-
cally thinking about the fact that it is at that very instant thinking
about itself thinking about itself thinking...and so on and so on,
like a transparent eye in a room full of mirrors.The kind of
reflecting I will consider—the kind that 3Lisp demonstrates
how, technically, to define, implement, and control—requires
that in the act of reflecting the process “take a step back” in
order to allow the interpreted process to consider what it was
just up to from a different vantage point, to bring into view
symbols and structures that describe its state “just a moment
earlier.” From the mere fact of a system’s having a name for
itself it does not follow that the system thereby automatically

8. Greiner and Lenat (1980), Genesereth and Lenat (1980).

a32

 3b · Dissertation — Introduction (V0.80)

 57

acquires the ability to focus on its current instantaneous self, for
in the process of “stepping back” or reflecting, the “mind’s eye”
moves out of its own view, being replaced by an (albeit pos-
sibly complete) account of itself. (Though this description is
surely more suggestive than incisive, the technical work to be
presented will help to make it precise.)

 1b.iii.δ Fine-grained control
Fourth, in virtue of reflecting a process can always obtain a
finer-grained control over its behaviour than would otherwise
be possible. What was previously an inexorably atomic step-
ping from one state to the next is opened up so that each move
can be analysed, countered, and so forth—and also be broken
down into constituent parts. As we will see in detail, in this
way reflective powers give a system a far more subtle and more
catholic—if less efficient—way of reacting to a world. The re-
quirement here is the usual one: for what was previously im-
plicit to be made explicit, albeit in a controlled and useful way,
without violating the ultimate truth that not everything can
be made explicit in a finite mechanism. This ability enables
a system designer to satisfy what might otherwise be taken
to be incompatible demands: (i) the provision of a small and
elegant kernel calculus, with crisp definition and strict behav-
iour; and at the same time (ii) the ability for the user (by us-
ing reflection) to be able to modify or adjust the behaviour of
this kernel in peculiar or extenuating circumstances. One of
reflection’s great powers is that it allows such simplicity and
flexibility to be achieved simultaneously.

 1b.iii.ε Partial detachment
This leads to the fifth general comment, which is that the abil-
ity to reflect never provides a complete separation, or an ut-
terly objective vantage point from which to view either oneself
or the world. No matter now reflective any given system or

58 Indiscrete Affairs · I

person may be, it remains a truism that there is ultimately no
escape from being the person in question. Though as the dis-
sertation proceeds I will increasingly downplay any connec-
tion between the formal work presented here and human abil-
ities, it is still perhaps helpful to say that the kind of reflection
to be presented here is closer to what is known as detachment
or awareness than it is to a strict kind of self-objectivity (this
is why I have been and will remain systematically imprecise
about whether reflection is fundamentally a way to think about
oneself or a way to think about the world).

The environment example just mentioned provides an il-
lustration in a computational setting. As we will see in detail,
the environment in which are bound the symbols that a pro-
gram is using is, at any level, merely part of the embedding
background in which the program is running. The program
operates within that background, dependent on it but—in
the normal (unreflective) course of events—unable to access it
explicitly. The operation of reflecting makes explicit what was
just implicit: it renders visible what was tacit, what was in the
background. In doing so, however, a new background fills in to
support the reflective deliberations. Again, the same is true of
human reflection: you and I can interrupt our conversation in
order to sort out the definition of a contentious term, but—as
has often been remarked—we do so using other terms. Since
language is our inherent medium of communication, we can-
not step out of it to view it from a completely independent
vantage point. Similarly, while the systems I will show how to
build can at any point back up and mention what was previ-
ously used, in doing so more structured background will come
into implicit use.

This lesson, of course, has been a major one in philosophy
at least since Peirce; certainly Quine’s famous comment about
Ncurath’s boat holds as true for the systems we design as it
does for us designers.9

9. Quine (1953a), p. 79 in the 1963 edition.

a33

 3b · Dissertation — Introduction (V0.80)

 59

 1b.iii.ζ Kernel requirements
Sixth and finally, the ability to reflect is something that must
be built into the heart or kernel of a calculus. There are theo-
retically demonstrable reasons why reflective powers cannot
be “progrrammed up” as an addition to a calculus (though one
can of course implement a reflective machine in a non-reflective
one: the difference between these two must always be kept in
mind). The reason for this claim is that, as discussed in the
first comment, being reflective is a stronger requirement on
a calculus than simply being able to model the calculus in the
calculus, something of which any machine of Turing power
is capable (this is the “making it matter” that was alluded to
above). This will be demonstrated in detail; the crucial differ-
ence, as suggested above, comes in connecting the self-model
to the basic interpretation functions in a causal way, so that
(for example and very roughly) when a process “decides to as-
sume something,” it can thereby in fact assume it, rather than
simply constructing a model or self-description or hypothesis
that represents itself as assuming it. As well as “backing up” in
order to reflect on its thoughts or operations, in other words,
a reflective process must be able to “drop back down again” to
consider the world directly, in accord with the consequences
of those reflections. Both parts of this involve a causal connec-
tion between the explicit programs and the basic workings of
the abstract machine, and such connections cannot be “pro-
grammed into” a calculus that does not support them primi-
tively.

 1b·iv Reflection and Self-Reference
At the beginning of this section I said that my investigation
of reflection in general would primarily concern itself, because
of operating under the knowledge representation hypothesis,
with the self-referential aspects of reflective behaviour. There
has been in the last century no lack of investigation into self-

60 Indiscrete Affairs · I

referential expressions in formal systems, especially since it has
been exactly in these areas where the major results on paradox,
incompleteness, undecidability, and so forth, have arisen. It is
therefore helpful to compare the present enterprise with these
theoretical precursors.

Two facets of the computational situation show how very
different our concerns here will be from these more tradition-
al studies. First, although I do not formalise this, there is no
doubt in my work that I consider the locus of referring to be
an entire process, not a particular expression or structure (espe-
cially not a solitary expression or structure). Even though I will
posit declarative semantics for individual expressions, I will
also make evident the fact that the designation of any given
expression is a function not only of that expression itself, but
also of the state of the processor at the point of that expression’s
use. And to the extent that “use” is even a coherent term for
symbolic activity, it is the processor that uses the symbol; the
symbol does not use itself. To the extent that we want a system
to be self-referential, then, we want the process as a whole to be
able to refer, to first approximation, to its whole self, although
in fact this usually reduces to a question of it referring to some
of its own ingredient structure.

Achieving this goal is not only not met by providing the
system with self-referential structure, but even more strongly,
I avoid such self-referential structures entirely, exactly to avoid
many of the intractable (if not inscrutable) problems that arise
in such cases. Because of its λ-calculus base, it is perfectly pos-
sible in 3Lisp to construct apparently self-designating expres-
sions (at least up to type-equivalence: token self-reference is
more difficult). But from a practical point of view the system
of levels I will embrace will by and large exclude such local
self-reference from our consideration. Truly self-referential
expressions, such as This sentence is six words long, are unargu-
ably odd, and certain instances of them, such as the clichéd

 3b · Dissertation — Introduction (V0.80)

 61

This sentence is false, are undeniably problematic (strictly
speaking, of course, the sentence “This sentence is six words
long” contains a self-reference, but is not itself self-referential;
however we could use instead the composite term “this five
word noun phrase”—though it is not as immediately evident
that this leads to trouble). None of these truths impinge par-
ticularly on our quite different concerns.

The second comment (illustrating how different 3Lisp and
procedural calculi are from mathematical and logical studies
of self-reference) is this: in traditional formal systems, the ac-
tual reference relationship between any given expression and
its referent (whether that referent is itself or a distal object) is
mediated by an externally attributed semantical interpretation
function. The sentence “This sentence is six words long” does
not actually refer, in any causal full-blooded sense, to anything;
rather, we English speakers take it to refer to itself. The refer-
ence relation connecting that sentence in its role as sign, and
that same sentence in its role as referent or significant, flows
through us.

As I said in the previous section in the discussion of causal
connection, in constructing reflective computational systems
it is crucial that the causal mediation not be deferred through
an external observer. Reflection in a computational system has
to be causally connected internally, even if the semantical under-
standing of that causal connection is externally attributed. For
example, in 3Lisp there is a primitive relationship that holds
between a certain kind of symbol, called a handle (a canoni-
cal form of meta-descriptive rigidly-designating name) and
another symbol that, semantically, each handle designates.
I.e., handles are the 3Lisp structural form of quotation. Sup-
pose that h1 is a handle, and that s1 is some structure that h1
refers to. Strictly speaking, there is an internal structural re-
lationship between h1 and s1, which we, as external semanti-
cal attributors, take in addition to be a reference relationship.

62 Indiscrete Affairs · I

Until we can construct computational systems that are what I
have called semantically original. the semantical import of that
relationship will always remain externally mediated. But the
causal relationship between h1 and s1 must be internal: oth-
erwise there would be no way for the internal computational
processes to treat that relationship in any way that mattered.

This may be clearer if put a bit more formally. Suppose that
φ is the externally attributed semantical interpretation func-
tion, and that ζ is the primitive, effective structural function
that relates handles to those structures we call their referents.
It is ζ that will allow the processor to produce or obtain causal
access to a structure s given that h is its handle. Thus in the
prior example, it is true both that φ(h1)=s1, due to our exter-
nal semantical attribution of reference to h, and that ζ(h1)=s1.
More generally, we know, given the 3Lisp architecture, that:

 ∀h,s [[handle(h) ∧ ζ(h)=s]] ≡ [φ(h)=s]] [2]

However, though in some sense it is strictly true, this equation
in no way reveals the structure of the relationship between φ
and ζ; it merely states their extensional equivalence. More re-
vealing of the fact that I take the relationship between handles
and referents to be a reference relation (if I may wantonly reify
relationships for a moment) is the following:

 φ(ζ)=φ [3]

Of, rather, since not all symbols are handles. as:

 φ(ζ) ⊂ φ [4]

The requirement that reflection matter, to summarise, is a cru-
cial facet of computational reflection—one without precedent
in pre-computational formal systems. What is striking is that
the mattering cannot be derived from the semantics, since it
would appear that mattering—which requires a real causal
connection—is a precursor to semantical originality, not some-

a34

 3b · Dissertation — Introduction (V0.80)

 63

thing that can follow semantical relationships. Put another
way, in the inchoately semantical computational systems I am
trying to build, the reference relationships between internal
meta-level symbols and their internal referents (the semanti-
cal relationships crucial in reflective considerations) may have
to be causal in two distinct ways: once mediated by us, who at-
tribute semantics to those symbols in the first place, and a sec-
ond time internally, so that the appropriate causal behaviour,
to which we attribute semantics, can be engendered. On that
day when we succeed in constructing semantically original
mechanisms, those two presently independent causal connec-
tions may merge; until then we will have to content ourselves
with causally original but semantically derivative systems. The
reflective dialects I will propose will all be of this form.

 1c A Process Reduction Model of Computation
I next want to sketch the model of computation on which the
analysis and design of 3Lisp will depend.

I take processes to be the fundamental subject matter;
though I will not define the concept precisely, we can assume
that a process consists approximately of a connected or co-
herent set of events through time. The reification of processes
as objects in their own right—composite and causally engen-
dered—is a distinctive, although not distinguishing, mark of
computer science. Processes are inherently temporal, but not
otherwise physical: they do not have spatial extent, although
they must have temporal extent Whether there are more ab-
stract dimensions in which it is appropriate to locate a process
is a question I will sidestep; since this entire characterisation is
by way of background for another discussion, I will rely more
on examples and on the uses to which we put these objects
than on explicit formulation.

I will depict processes as in figure 1, on the next page. The
boundary of the icon is intended to signify the boundary or

a35

64 Indiscrete Affairs · I

surface of the process itself, taken to be the interface between
the process and the world in which it exists (I take objectify-
ing processes to involve “carving them” out of a world in which
they can then be said to be embedded). Thus the set of events
that collectively form the behaviour of a co-
herent process in a given world would consist
of all events on the surface of this abstract
object. This set of events could be more or
less specifically described: we might simply
say that the process had certain gross input/
output behaviour (with “input” and “output”
being defined as a certain class of surface
perturbation—an interesting and non-trivial problem), or we
might account in tine detail for every nuance of the process’
behaviour, including the exact temporal relationships between
one event and the next, and so forth.

It is crucial to distinguish these more and less fine-grained
accounts of the surface of a process, on the one hand—its
behavioural interface or interactions with its environment—
from compositional accounts of its interior, on the other. That
a process has such an “interior” is again a striking assumption
throughout computer science: the role of what in computer
science are universally called interpreters, though I myself
will use the term processors, is a striking example. Suppose
for instance that one were interact with a so-called “Lisp-
based editor.” It is standard to assume that the Lisp interpret-
er (processor) is an ingredient process within the process with
which you interact: moreover, it is understood to be the locus
of anima or agency inside your editor process, that in turn sup-
plies the temporal action or activity in the editor itself. That
is, of all the interior ingredients constituting the editor, only
the interpreter (processor) is understood to be active; all other
components—specifically, the “editor program” and any as-
sociated data structures—will be static or at least passive, at

a36

P

Process

Figure 1

 3b · Dissertation — Introduction (V0.80)

 65

least at this level of abstraction. Yet the one active ingredient
(interior) process never appears as the surface of the editor: no
user interaction with the editor (via the keyboard, say) is it-
self directly an interaction with the Lisp processor. Rather, the
Lisp processor, in conjunction with some appropriate (pas-
sive) Lisp program, together engender the behavioural surface
with which the user interacts.

Computer science has studied a variety of such architec-
tures—or classes of architecture; here I will briefly mention
just two, but will then focus, throughout the rest of the dis-
sertation, on just one. Every computational process, I will as-
sume (I will take on the question of which processes we are
disposed to call computational in a moment), has within it at
least one other process, which, singly or collectively, supplies
the animate agency of the overall constituted process.

I will call this model a process reduction model of com-
putation. since at each stage of computational reduction a given
process is reduced in terms of constituent symbols and other
processes. There may be more than one internal process (in
what are known as parallel or concurrent processes), or there
may be just a single one (known as serial processes). Reduc-
tions of processes that do not posit an interior process as the
source of the agency I will consider to be outside the realm
of computer science proper—though of course some such
reduction must at some point be accounted for, if the engen-
dered process is ever to be realised. I will view these alterna-
tives forms of reduction—from process to, say, behaviours of
physical mechanism—to fall more within physics or electron-
ics (or perhaps computer engineering) than within computer
science per se. What is critical is that at some stage in a series
of computational reductions this leap from the domain or
processes to the domain of mechanisms be taken, as for ex-
ample in the explaining how the behaviour of a set of logic
circuits constitutes a processor (interpreter) for the microcode

66 Indiscrete Affairs · I

of a given computer. Given this one account of what may rea-
sonably be called the realisation of a computational process,
an entire hierarchy of processes above it may obtain indirect
realisation through a series of process reductions of the above

form. For example, if that
microcode processor inter-
prets a set of instructions
that are the program for a
macro machine (say, a cpu),
then a macro processor—
an interpreter (processor)
for the resulting “machine
language” may be said to ex-

ist. Similarly, that macro machine may in turn interpret (pro-
cess) a machine language program that implements snobol:
thus by two stages of “process composition” (i.e., the inverse of
process reduction) a snobol processor is also realised.

In order to make this talk of processors and so forth a little
clearer, it helps to diagram two different forms of process re-
duction: what I will call [parallel] reduction and [serial] reduc-
tion. Taking ‘⟹’ to mean “reduces to,” figure 2 depicts [parallel]
reduction, by showing that process p reduces to a set of five in-
terior processes (p1…p5). How these processes [interact] I will
not here say: I merely assume that those five ingredient pro-
cesses do interact in some fashion, so that taken as a composite
unity their total behaviour is (i.e., can be “interpreted” as) the
behaviour of the thereby constituted process. Responsibility
for the surface of the total process p is assumed to be shared in
some way amongst the five ingredients. Examples of this sort
of reduction may be found at any level of the computational
spectrum—from metaphors of disk-controllers communicat-
ing with bus mediators communicating with central proces-
sors, to the message-passing metaphors in such Artificial In-
telligence languages as acti and Smalltalk and so forth.10

P
P1

P2

P3 P4

P5

Figure 2

10. For references on the message-passing metaphor, see Hewitt et al. (1974)

a37

a39

a38

(cont’d)

 3b · Dissertation — Introduction (V0.80)

 67

[Parallel] reductions will receive only passing mention in
this dissertation; I discuss them only in order to admit that
the model of reflection that I will propose is not (at least at
present) sufficiently general to encompass them. Instead I will
focus instead on the more common model that I am calling
[serial] reduction, pictured in figure 3. In such cases the over-
all process is composed of what I will call a processor and a
structural field. The former ingredient is the locus of active
agency; as already mentioned, it is what is typically called an
‘interpreter,’ but from here on I will avoid that term (or when
using it, do so within quotation marks), because of its confu-
sion with semantical notions of interpretation from the de-
clarative tradition (I will have much more to say about this
confusion in [dissertation] chapter 3). The latter ingredient is
intended to include both the program or the program’s data
structures (or both); it is often taken to consist of a set of
symbols, although that term is so semantically loaded that for

the time being I will avoid it as
well.

One benefit of the [serial]
model of process reduction is
that it can be used to under-
stand both language design
and the construction of par-
ticular programs. For example,
we can characterise Fortran in
its terms, by positing a Fortran

“processor” that computes over (examines, manipulates, con-
structs, reacts to, and so forth) elements of the Fortran struc-
tural field, which includes primarily an ordered sequence of
Fortran instructions, format statements, arrays, etc. Suppose
you were to set out to develop a Fortran “program” (really:
process) to manage your financial affairs—which for discus-

P
Processor

Structural Field

Figure 3

and Hewitt (1977); for act1 see Lieberman (1987); for Smalltalk see Gold-
berg (1981), Ingalls (1978).

a40

a41

68 Indiscrete Affairs · I

sion I will call Chequers. To do this, you would specify a set
of Fortran data structures, and design a process to interact
with them. In terms of the model, those data structures—the
tables that list current balances, recent deposits, interest rates,
currency conversion factors, and so on—would constitute the
structural field of the first [serial] process reduction of Che-
quers. The “program” (i.e., process) you design to interact with
these data base I will simply call pc. Thus the first Chequers
[serial] reduction would be pictured in the model as depicted
in figure 4.

We are assuming, however, that pc is specified by a Fortran
program. pc is not itself that program—or any program, for
that matter; pc is a process, and programs are static, requiring
interpretation by a processor in order to engender processes
or behaviour. Rather, pc can itself be understood in terms of
a second [serial] reduction, of the program c that, when pro-
cessed by the Fortran processor, yields process pc as a result.
In toto, that is, the development of Chequers involves have

a double [serial] reduction, de-
picted in figure 5.

A host of questions would
have to be answered before
this model could be made pre-
cise (before, for example, one
could develop anything like an
adequate mathematical treat-
ment of these intuitions). For

example, the data structures in the foregoing example them-
selves have to be implemented in Fortran as well. However to
fill out the model just a little, we can suggest how we might, in
these terms, define a variety of commonplace terms of art of
computer science.

First, I take the computer science term ‘interpreter’ (which,

Chequers

PC Processor

Structural Field

Figure 4

 3b · Dissertation — Introduction (V0.80)

 69

to repeat, I will call a processor) to be used in the following way:

 Interpreter: A process that is the interior process in an [se-
rial] reduction of another interior process.

For example, the process pc developed in the course or imple-
menting Chequers is not an interpreter, on this definition, be-
cause although it is an ingredient process (it is not, in particu-

lar, Chequers itself, but rather
interior to Chequers), it is nev-
ertheless interior only singly.
The process thereby consti-
tuted—viz., Chequers—is not
itself an interior process. On
the other hand, it is legitimate
to call the process that “inter-
prets” (i.e., processes) Lisp pro-
grams an interpreter, because
Lisp programs are structural

field arrangements that engender other interior processes that
work over data structures so as to yield yet other processes.

Second, I would argue that we use “compilation” as follows:

 Compilation: The transformation or translation of a struc-
tural field arrangement s1 to another structural field ar-
rangement s2, in such a way that the surface behaviour of
the process q1 that would result from the processing of s1 by
some processor p1 is equivalent—modulo some appropriate
equivalence metric—to the surface behaviour of the process
q2 that would result from the processing of s2 by some other
processor p2.

For example, I spoke above about a Fortran “processor,” but
of course such a processor is rarely if ever realised. Rather,
Fortran programs are typically compiled—usually into some
form of machine language. Consider the compiler that com-

S

C

Fortran Processor

PC

Chequers

Figure 5

70 Indiscrete Affairs · I

piles Fortran into the machine language of the ibm 360. Then
the compilation of a particular Fortran program cF into an
ibm 360 machine language program c360 would be correct
just in case the surface of the process that would result from
the processing of cF by the (hypothetical) Fortran processor
would be equivalent to the process that will actually result by
the processing of c360 by the basic ibm 360 machine language
processor.

In sum, compilation is defined relative to two [serial] re-
ductions, and is mandated only to ensure equivalence, modulo
an appropriate metric, of resulting process surfaces.

Third, by ‘implementation’ I take it that we refer to two kinds
of construction.

 Process Implementation (i.e., programming): The con-
struction of a structural field arrangement s for some proces-
sor p such that the surface of the process that results from
the processing of s by p yields the desired behaviour—i.e.,
desired process q.

More interesting is to implement a computational language.
In terms of the model, we can characterise (serial) computer
languages as follows:

 Computational Language: The architecture of a struc-
tural field and a behaviourally specified processor for it, in
which are specified both possible arrangements or configura-
tions of the field, and the behaviour that would result from
the processing of them by the specified processor.

In terms of this definition, we can characterise the implementa-
tion of a language:

 Language Implementation: The provision of a process p
that can be [serially] reduced to the structural field and inte-
rior processor of the language being implemented.

 3b · Dissertation — Introduction (V0.80)

 71

To implement Lisp, in other words, all that is required is the
provision of a process that behaviourally appears to be a consti-
tuted process consisting of the Lisp structural field and the in-
terior Lisp processor. Thus I am completely free of any actual
commitment as to the reality, if any, of the implemented field.

Typically, one language is implemented in another by con-
structing some arrangement or set of protocols on the data
structures of the implementing language to encode the struc-
tural field of the implemented language. and by constructing a
program in the implementing language that, when processed
by the implementing language’s processor, will yield a process
whose surface can be taken as a processor for the interpreted
language, with respect to that encoding of the implemented
language’s structural field. (By a program I refer to a structural
field arrangement within an interior processor—i.e., to the in-
ner structural field of a double reduction—since programs are
structures that are interpreted to yield processes that in turn
interact with another structural field (the data structures) so
as to engender a whole constituted behaviour.)

Finally, it is straightforward to imagine how this model
could be used in cognitive theorising. A weak computational
model of some mental phenomenon or behaviour ψ would be
a computational process that was claimed to be superficially
equivalent to ψ (as always: modulo some equivalence metric).
Note that surface equivalence of this sort can be arbitrarily
fine-grained. Just because a given computational model pre-
dicts the most minute temporal nuances revealed by click-stop
experiments and so forth, that does not imply that anything
other than surface equivalence has been achieved In contrast, a
strong computational model would posit not only surface but
interior architectural structure. Thus for example Fodor’s recent
claim of mental modularity11 is a coarse-grained but strong
claim: he suggests that the dominant or overarching compu-
tational reduction of the mental is closer to a [parallel] than to
a [serial] reduction.

a42

11. Fodor (forthcoming).

72 Indiscrete Affairs · I

 • • •
This has been the briefest of sketches of a substantial subject.
Ultimately, it should be formalised into a generally applicable
and mathematically rigorous account. In this dissertation I
will merely use its basic conceptual structure to organise the
analysis, and will also base the 3Lisp architecture on it. Even
for these purposes, however, it is important to identify three
properties that all structural fields must manifest.

First, over every structural field there must be defined a
locality metric or measure—since (in concert with physical
constraint) the interaction of a processor with a structural field is
always constrained to be locally continuous.

Informally, one can think of the processor looking at the
structural field with a pencil-beam flashlight—able to see and
react only to what is currently illuminated (more formally, the
behaviour of the processor must always be a function only of
its internal state plus the current single structural field element
under investigation). Why it is that the well-known joke about
a come-from statement in Fortran is funny, for example, can
be explained only because this it violates this local accessibil-
ity constraint (it is otherwise perfectly well-defined). Note as
well that in logic, the λ-calculus, and so forth, no such locality
considerations come into play. In addition, the measure space
yielded by this locality metric need not be symmetrical, as Lisp
demonstrates; from the fact that a is accessible from b it does
not follow that b must be accessible from a.

Second—and this is a major point, with which we will need
to grapple considerably in our considerations of semantics—
structural field elements are taken to be significant or meaning-
ful. This is why we tend to call them symbols. In particular,
i will count as computational only those processes consisting
of ingredient structures and events to which we, as external
observers, attribute semantical value or import.

a43

a44

 3b · Dissertation — Introduction (V0.80)

 73

The reason I do not consider a car to be a computer, even if
I am tempted to think of its electronic fuel injection module
computationally, hinges explicitly on this issue of semantical
attribution. The main components of a car we understand in
terms of mechanics—forces, torques, plasticity, geometry, heat,
combustion, and so on. These are not “interpreted” or seman-
tical notions; or to put the same point another way, explain-
ing a car does not require positing any externally attributed
semantical interpretation function in order to make sense of a
car’s inner workings. With respect to a computer, however—
whether abacus, calculator, electronic fuel injection system, or
a full-scale digital computer—the best explanation is exactly
in terms of the interpretation of the ingredients, even though
the machine itself is not allowed access to that interpretation
(for fear of violating the strictures of mechanism). Thus while
I may know that the arithmetic logical unit in my machine
works in such and such a way, I nevertheless “understand” its
workings in terms of addition, logical operations, and so forth,
all of which speak about the interpretations of its parts and
workings, rather than speaking about them directly. In other
words the proper use of the term “computational” is as a predi-
cate on explanations, not on artefacts.

The third constraint follows directly on the second: in spite
of this semantical attribution, the interior processes of a com-
putational process must interact with these structures and
symbols and other processes in complete ignorance and disre-
gard of any this externally-attributed semantical weight. This is
the substance of the claim that computation is formal symbol
manipulation—that computation has to do with the interac-
tion with symbols solely in virtue of their spelling or shape.
We computer scientists are so used to this formality condi-
tion—this requirement that computation proceed “syntacti-
cally”—that we are liable to forget that it is a major claim, and
are in danger of thinking that the simpler phrase “symbol ma-

a45

A44

74 Indiscrete Affairs · I

nipulation” means formal symbol manipulation. Nevertheless,
part of the semantical reconstruction to be undertaken here
will rest on a claim that, in spite of its familiarity, we have not
taken semantical attribution seriously enough.

A book should be written on all these issues; I mention them
here only because they will play an important role in the up-
coming reconstruction of Lisp. There are obvious parallels and
connections to be explored, for example, between this external
attribution of significance to the ingredients of a computa-
tional process, and the issue of what would be required far a
computational system to be semantically original in the sense
discussed at the beginning of the previous section. This is not
the place for such investigations; but as §1·d and [disserta-
tion] chapter 3 will make clear, below, this attribution of sig-
nificance to Lisp structures must be part of the full declarative
semantics for Lisp. The present moral is merely that, although
including such interpretation within the scope of an account
of a language’s semantics has not (to my knowledge) been
done before, the attribution of semantic interpretation itself
is neither something new, nor something specific to Lisp’s cir-
cumstances. Externally attributed (declarative) significance is
a foundational part of computing, even if not yet fully recog-
nised in computer science.

 1d The Rationalisation of
 Computational Semantics

From even the few introductory sections that have been pre-
sented so far, it is clear that semantical vocabulary will perme-
ate the upcoming analysis. In discussing the Knowledge Rep-
resentation and Reflection hypotheses, I talked of symbols
that represented knowledge about the world, and of structures
that designated other structures. In the model of computation
just presented, I said that the attribution of semantic signifi-

 3b · Dissertation — Introduction (V0.80)

 75

cance to the ingredients of a process was a distinguishing mark
of computing. Informally, no one could possibly understand
Lisp without knowing that the atom t stands for truth, and nil
for falsity. If we subscribe to the view that computer science
is about formal symbol manipulation, we admit not only that
the subject matter involves symbols, but also that any compu-
tations over them must occur in ignorance of their semanti-
cal weight (you cannot treat a non-semantical object, such
as an eggplant or a waterfall, formally, unless you first, non-
standardly, set it up as a symbol; the mere use of the predi-
cate ‘formal’ assumes that its object is significant, or has been
attributed significance, even if on the side). Even at the very
highest levels, when we say that a process—human or com-
putational—is reasoning about a given subject, or reasoning
about its own thought processes, we implicate semantics, since
the term ‘semantics’ can (at least in part) be viewed as merely a
fancy word for aboutness.

It is therefore necessary for me to add to last section’s ac-
count of processes and process reduction a corresponding
accounting of the semantical assumptions I will make and
techniques I will use, and to make clear what I mean when
we say that I will subject computational dialects to semantical
scrutiny.

 1d·i Pre-Theoretic Assumptions
When we engage in semantical analysis, I do not take it to be
our goal simply to provide a mathematically adequate specifi-
cation of the behaviour of one or more procedural calculi that
would enable us, for example, to prove that programs will meet
some specification of what they were designed to do. That is: by
“semantics” I do not simply mean a mathematical formulation
of the properties of a system, formulated from a meta-theoretic
vantage point. (Unfortunately, in my view, in some writers the
term seems to be acquiring this weak connotation.) Rather, a47

76 Indiscrete Affairs · I

I take semantics to have fundamentally to do with meaning
and reference and so forth—whatever they come to—as para-
digmatically manifested in human thought and language (as
was mentioned in §1b·i). I am therefore interested in seman-
tics for two reasons: first, because, as I said at the end of the
last section, all computational systems are marked by external
semantical attribution; and second, because semantics is the
study that will reveal what a computational system is reason-
ing about, and a theory of what a computational process is rea-
soning about is a pre-requisite to a proper characterisation of
reflection.

Given this agenda, I will approach the semantical study of
computational systems with a rather precise set of guidelines.
In particular, I will require that any subsequent semantical
analyses answer to the following two requirements, emerging
from the two facts about processes and structural fields laid
out at the end of section:

1. They should manifest the fact that we understand
computational structures in virtue of attributing to
them semantical import;

2. They should make evident that, in spite of such at-
tribution, computational processes are formal, in that
they must be defined over structures independent of
their semantical weight.

These two principles alone entail the requirement of a double
semantics, since the attributed semantics mentioned in the
first premise includes not only a pre-theoretic understanding
of what happens to computational symbols, but also a pre-com-
putational intuition as to what those symbols stand for. It fol-
lows that we will have to make clear the declarative semantics
of the elements of (in our case) the Lisp structural field, as well
as establishing their procedural import

I will explore these results in more detail below, but in bare

a48

 3b · Dissertation — Introduction (V0.80)

 77

outlines the argument is straightforward. Most of the results
are consequences of the following basic tenet (relativised here
to Lisp, for perspicuity, but the same would hold for any other
calculus):

 What Lisp structures mean is not a function of how they are
treated by the Lisp processor. Rather, how they are treated is
a function of what they mean.

For example, I take it that the Lisp expression “(+ 2 3)” evalu-
ates to “5” for the undeniable reason that “(+ 2 3)” is understood
as a complex name of the number that is the successor of four.
We arrange things—we define Lisp in the way that we do—so
that the numeral 5 is the value because we know in advance what
(+ 2 3) stands for. To borrow a phrase from Barwise and Perry,
this reconstruction is an attempt to “regain our semantic inno-
cence”—an innocence that still permeates traditional formal
systems (logic, the λ-calculus, and so forth), but that has been
lost in the attempt to characterise the so-called “semantics” of
computer programming languages.

That “(+ 2 3)” designates the number five is self-evident, as
are many other examples on which I will begin to erect my
denotational account. I have also already alluded to the equal-
ly unarguable fact that (at least in certain contexts) t and nil
designate Truth and Falsity. Similarly, it is commonplace use
the term “car” as a descriptive function to designate the first
element of a pair, as for example in the English sentence “I
noticed that the car of that list is the atom lambda.” The im-
portant point is that, in that English sentence, the phrase “car
of that list” occurs as a name or a designator—not as a proce-
dure call. Nothing happens, when I say it; it is not executed. It is
merely a way of pointing to something—to the first element of
the list pointed to by the ingredient phrase ‘that list.’ Similarly,
it is hard to imagine an argument against the idea that “(quote
x)” designates x—in contrast to the claim, which is also often

a49

a50

78 Indiscrete Affairs · I

heard, that does not speak at all about naming or designation,
but only about procedural treatment: that quote is a function
that holds off the evaluator.

In sum, the moral is not so much that formulating the de-
clarative semantics of a computational formalism is difficult,
as that it must be recognised as an important thing to do.

 1d·ii Semantics in a Computational Setting
In the most general form that I will use the term semantics,12 a
semantical investigation aims to characterise the relationship
between a syntactic domain and a semantic domain—a rela-
tionship typically studied as a mathematical function mapping
elements of the first domain into elements of the second. I
will call such a function an interpretation function (it was
in order to be able to talk about this function, which must

be sharply distin-
guished from what is
called an ‘interpreter’
in computer science,

that I switched to the term processor). Schematically, that it, as
shown in figure 6, the function φ is taken to be an interpreta-
tion function from s to d.

In a computational setting, this simple situation is made
more complex because we are studying a variety of interact-
ing interpretation functions. In particular, figure 7 identifies
the relationships between the three main semantical functions
that will permeate the analysis of 3Lisp. θ is the interpretation
function mapping notations into elements of the structural
field, φ is the interpretation function making explicit our at-
tributed semantics to structural field elements, and ψ is the
function formally computed by the language processor. ω will
be explained below; it is intended to indicate a φ-semantic
characterisation of the relationship between s1 and s2, whereas

12. See the postscript, however, where I in part disavow this fractured
notion of syntactic and semantic domains.

 Syntactic Domain S Semantic Domain D
φ

Figure 6

a51

 3b · Dissertation — Introduction (V0.80)

 79

ψ indicates the formally computed relationship—a distinction
similar, as I will soon argue, to that between the logical rela-
tionships of derivability (⊢) and entailment (⊨).

The names have been chosen for mnemonic convenience:
‘ψ’ by analogy with psychology, since it is a study of the inter-
nal relationships between and among symbols, all of which
are within the machine (‘ψ’ in this sense is meant to signify
psychology narrowly construed, in the sense of Fodor, Putnam,
and others13). The label ‘φ’, on the other hand, chosen to sug-
gest philosophy, signifies the relationship between a set of sym-
bols and the world. By analogy, suppose we were to accept the
hypothesis that people represent or encode English sentences
in an internal mental language called mentalese (suppose, in
other words, that we accept the hypothesis that our minds
are computational processes). If you say to me “A composer

who died in 1750” and I
respond with “Johan Se-
bastian Bach”, then, in
terms of the figure, the
first phrase, qua sentence
of English, would be n1; it
would “notate” or “express”
the mentalese structure
n1, and the person who
lived in the seventeenth

and eighteenth centuries would be the referent d1. Similarly,
my reply would be n2, the mentalese fragment that I there-
by express would be s2, and d2 would again be the long-dead
composer. I.e., in this case d1 and d2 would be identical.

n1, s1, d1, n2, s2, and d2, in other words, need not necessarily
all be distinct; in a variety of different circumstances two or
more of them may be one and the same entity. I will examine
cases, for example, of self-referential designators, where s1 and
d1 are the same object. Similarly, if, on hearing the phrase “the

Structure S1 Structure S2

φ φ

Notation N1 Notation N2

θ θ-1

Designation D1 Designation D2
ω

ψ

Figure 7

13. Fodor (1980).

a52

a53

80 Indiscrete Affairs · I

pseudonym of Samuel Clemens,” I reply “Mark Twain”, then d1
and n2 are identical. By far the most common situation, how-
ever, will be as in the Bach example, where d1 and d2 are the
same entity—a circumstance in which I will say that the func-
tion ψ is designation-preserving. As we will see in the next
section, the α-reduction and β-reduction of the λ-calculus,
and the derivability relationship (⊢) of logic, are both desig-
nation-preserving relationships. Similarly, the 2Lisp and 3Lisp
processors I present will be designation-preserving, whereas
1Lisp’s and Scheme’s evaluation protocols, as we have already
indicated, are not.

In the terms of this figure, the argument I will present in
[dissertation] chapter 3 will run roughly as follows. First I will
review both logic systems and the λ-calculus, to illustrate the
general properties of the φ and ψ employed in those formal-
isms, for comparison. Next I will shift towards computational
systems, beginning with Prolog, since it has evident connec-
tions to both declarative and procedural traditions. Finally I
will take up Lisp. I will argue that it is not only coherent, but
in fact natural, to define a declarative φ for Lisp, as well as
a procedural ψ. I will also sketch some of the mathematical
characterisation of these two interpretation functions. It will
be clear that though similar in certain ways, they are nonethe-
less crucially distinct. In particular, I will be able to show that
1Lisp’s ψ (eval) obeys the following equation. I will say that any
system that satisfies this equation has the evaluation proper-

ty, and the statement that, for example, the equation holds of
1Lisp the evaluation theorem. (The formulation used here is
simplified for perspicuity, ignoring contextual relativisation; 𝒮
is the set of structural field elements.)

 ∀s∊𝒮 [if φ(s)∊𝒮 then ψ(s)=φ(s) [5]
 else φ(ψ(s))=φ(s)]

1Lisp’s evaluator, in other words, de-references just those struc-

a54

a55

a56

a57

 3b · Dissertation — Introduction (V0.80)

 81

tures whose referents lie within the structural field, and is des-
ignation-preserving otherwise. Where it can, in other words,
1Lisp’s ψ (i.e, its processor) implements φ; when it cannot, ψ
is φ-preserving, although what it does do with its argument
in this case has yet to be explained (saying that it preserves φ

is too easy: the identity function
preserves designation as well, but
eval is not the identity function).

The behaviour described in
[5] is unfortunate, in part because
the question of whether φ(s)∊𝒮
is not in general decidable, and
therefore even if one knows of
two expressions s1 and s2 that s2
is ψ(s1), one still does not neces-

sarily know the relationships between φ(s1) and φ(s2). More
seriously, it makes the explicit use of meta-structural facilities
extraordinarily awkward, thus defeating attempts to engender
reflection. I will argue instead for a dialect described by the
following alternative (again in skeletal form):

 ∀s∊𝒮 [[φ(ψ(s))=φ(s)] ∧ [normal-form(ψ(s))]] [6]

When I prove it for 2Lisp, I will call this equation the normal-

isation theorem; I will say that any system satisfying it has
the normalisation property. Diagrammatically. the circum-
stance it describes is pictured in figure 8. Such a ψ, in other
words, is always φ-preserving. In addition, it relies on a notion
of normal-formedness, which we will have to define.

In the λ-calculus, ψ(s) would definitionally be in normal-
form, since in that calculus normal-formedness is defined in
terms of the non-applicability of any further β-reductions.
As I will argue in more detail in [dissertation] chapter 3, this
makes the notion less than ideally useful: in designing 2Lisp
and 3Lisp. In contrast, therefore, I will define normal-formed-

Structure S1 Structure S2

φ φ

Designation D

ψ

Normal form

Figure 8

82 Indiscrete Affairs · I

ness in terms of the following three (provably independent)
properties:

1. Normal-form designators must be context-indepen-

dent, in the sense of having the same declarative and
procedural import independent of their context of use;

2. They must also be side-effect free, implying that any
(further) procedural treatment of them will have no
affect on the structural field or state of the processor;

3. They must be stable, meaning that they normalise to
themselves in all contexts.

It will then require a proof that all 2Lisp and 3Lisp results
(all expressions ψ(s)) are in normal-form. In addition, from
the third (stability) property, plus this proof that ψ’s range
includes only normal-form expressions, it will be possible to
show that ψ is idempotent, as was suggested earlier (ψ=ψ°ψ—
i.e., ∀s ψ(s)=ψ(ψ(s)))—a property of 2Lisp and 3Lisp that
will ultimately be shown to have substantial practical benefits.

There is another property of normal-form designators in
2Lisp and 3Lisp, beyond the three requirements just listed,
which follows from the category alignment mandate. In de-
signing those dialects I will insist that the structural category
of each normal form designator be determinable from the
type of object designated, independent of the structural type
of the original designator, and independent as well of any of
the machinery involved in implementing ψ (this is in distinc-
tion to the received notion of normal form employed in the
λ-calculus, as will be examined in a moment). For example,
I will be able to demonstrate that any term that designates
a number will be taken by ψ into a numeral, since numerals
will be defined as the normal-form designators of numbers.
In other words. from just the designation of a structure s the
structural category of ψ(s) will be predictable, independent of
the form of s itself (although the token identity of ψ(s) cannot

 3b · Dissertation — Introduction (V0.80)

 83

be predicted on such information alone, since normal-form
designators are not necessarily unique or canonical). This cat-
egory result, however, will also need to be proved: I call it the
semantical type theorem.

That normal form designators cannot be canonical arises,
of course, from computability considerations: one cannot de-
cide in general whether two expressions designate the same
function, and therefore if normal-form function designators
were required to be unique, it would follow that expressions
that designated functions could not necessarily be normalised.
Instead of pursuing that approach, however, which I would
view as unhelpful, I will instead adopt a non-unique notion of
normal-form function designator, which still satisfies the three
requirements specified above; such a designator will by defini-
tion be called a closure. All well-formed function-designating
expressions, on this scheme, will succumb to a standard nor-
malisation.

Some 2Lisp (and 3Lisp) examples will illustrate all of these
points. I assume that the numbers are included in the semanti-
cal domain, a syntactic [i.e., structural] class of numerals are
taken to be normal-form number designators. The numerals
are canonical (one per number), and as usual are side-effect
free and context-independent; thus they satisfy the require-
ments on normal-formedness. The semantical type theorem
says that any term that designates a number will normalise to
a numeral: thus if x designates five and y designates six, and if
+ designates the addition function, then we know (can prove)
that (+ x y) designates eleven and will normalise to the nu-
meral 11. Similarly, there are two boolean constants $t and $f
that are normal-form designators of Truth and Falsity, respec-
tively, and a canonical set of rigid structure designators called
handles that are normal-form designators of all s-expressions
(including themselves). And so on: closures are normal-form

a58

84 Indiscrete Affairs · I

function designators, as mentioned above; I will also specify
normal-form designators for sequences and other types of
mathematical objects included in the semantic domain.

I have diverted the discussion away from general semantics,
onto the particulars of 2Lisp and 3Lisp, in order to illustrate
how the semantical reconstruction I endorse impinges on lan-
guage design. However, it is important to recognise that the
behaviour mandated by [6] is not new: this is how all stan-
dard semantical treatments of the λ-calculus proceed, and the
designation-preserving aspect of it is approximately true of
the inference procedures in logical systems as well, as we will
see in detail in [dissertation] chapter 3. Neither the λ-calculus
reduction protocols, in other words, nor any of the typical in-
ference rules one encounters in mathematical or philosophical
logics, de-reference the expressions over which they are defined.
In fact it is hard to imagine defending equation [5]. Rather, it
seems reasonable to speculate that because Lisp includes its
syntactic domain within the semantic domain—i.e., because
Lisp has quote as a primitive “operation”—a semantic inel-
egance was inadvertently introduced into the design of the
language that has never been corrected. If this is right, then
the proposed rationalisation of Lisp can be understood as an
attempt to regain the semantical clarity of predicate logic and
the λ-calculus, achieved in part by connecting the language of
the computational calculi with the language in which prior lin-
guistic systems have been studied.

It is this regained coherence that I am claiming is a neces-
sary prerequisite to a coherent treatment of reflection.

One final comment The consonance of [6] with standard
semantical treatments of the λ-calculus, and the comments
just made about Lisp’s inclusion of quote, suggest that one
way to view the present project is as a semantical analysis of a
variant of the λ-calculus with quotation. In the Lisp dialects

a59

 3b · Dissertation — Introduction (V0.80)

 85

I consider, I will retain sufficient machinery to handle side ef-
fects, but it is of course always possible to remove such facili-
ties from a calculus. Similarly, we could remove the numerals
and atomic function designators (i.e., the ability to name com-
posite expressions as unities). What would emerge would be
a semantics for a deviant λ-calculus with some operator like
quote included as a primitive syntactic construct—a seman-
tics for a meta-structural extension of the already higher-order
λ-calculus. I will not pursue this line of attack further in this
dissertation, but, once the mathematical analysis of 2Lisp is
in place, such an analysis should emerge as a straightforward
corollary.

 1d·iii Recursive and Compositional Formulations
The previous sections have briefly suggested goals for the se-
mantical account to be developed, but they say nothing about
how those goals can be reached. In [dissertation] chapter 3,
where the reconstruction of semantics is laid out, I will of
course pursue this latter question in detail, but I can sum-
marise some of its results here.

Beginning very simply, standard approaches suffice. For ex-
ample, I begin with declarative import (φ), and initially posit
the designation of each primitive object type (saying for in-
stance that the numerals designate the numbers, and that the
primitively recognised closures designate a certain set of func-
tions, and so forth), and then specify recursive rules that show
how the designation of each composite expression emerges
from the designation of its ingredients. Similarly, in parallel
fashion I specify the procedural consequence (ψ) of each primi-
tive type (saying in particular that the numerals and booleans
are self-evaluating, that atoms evaluate to their bindings, and
so forth), and then once again specify recursive rules showing
how the value or result of a composite expression is formed
from the results of processing its constituents.

a60

86 Indiscrete Affairs · I

If we were considering only purely extensional, side-effect
free, functional languages, the story might end there. However
a variety of complications will demand resolution, of which
two may be mentioned here. First, none of the Lisps that I
will consider are purely extensional: there are intensional con-
structs of various sorts (quote, for example, and even lambda,
which I will view as a standard intensional procedure, rather
than as a syntactic mark). The hyper-intensional quote op-
erator is not in itself difficult to deal with, although I will also
consider questions about the less fine-grained intensionality
manifested by a statically-scoped lambda. As in any system,
the ability to deal with intensional constructs requires a re-
formulation of the semantics of all expressions—i.e., requires
recasting the semantics of extensional procedures as well, in
appropriate ways. This is a minor complexity, but no particu-
lar difficulty emerges.

The second complication has to do with side-effects and
contexts. All standard model-theoretic techniques of course
allow for the general fact that the semantical import of a
term may depend in part of on the context in which it is used
(variables are the classic simple example). However, side-ef-
fects—which are part of the total procedural consequence of an
expression, impinge on the appropriate context for declarative
purposes as well as well as for procedural ones. For example, in
a context in which x is bound to the numeral 3 and y is bound
to the numeral 4, it is straightforward to say that the term
(+ 3 y) designates the number seven, and returns the numeral
7. However consider the semantics of the following more com-
plex expression (this is standard Lisp) when evaluated in the
same context:

 (+ 3 (prog (setq y 14) y)) [7]

It would be hopeless—to say nothing of false—to have the
formulation of declarative import ignore procedural conse-

a61

a62

a63

 3b · Dissertation — Introduction (V0.80)

 87

quence, and claim that [7] designates seven, even though it
patently returns the numeral 17 (although I am under no ob-
ligation to make the declarative and procedural stories cohere
in anything like an astethic sense—in fact I will reject 1-Lisp
exactly because they do not cohere in any way that I can ac-
cept). On the other hand, to include the procedural effect of
the setq within the specification of φ would seem to violate
the ground intuition arguing that the designation of this term,
and the structure to which it evaluates, are different.

The approach I will ultimately adopt is one in which I
define what I call a general significance function Σ which
embodies both declarative import (designation), local proce-
dural consequence (what an expression “evaluates to,” to use
1Lisp jargon), and full procedural consequence (the complete
contextual effects of an expression, including side-effects to
the environment, modifications to the structural field, and so
forth). Only the total significance of the dialects I define will
be strictly compositional; the components of that total signifi-
cance, such as the designation, will be recursively specified in
terms of the designation of the constituents, relativised to the
total context of use specified by the encompassing general sig-
nificance function. In this way I will be able to formulate pre-
cisely the intuition that the expression given in [7] designates
seventeen, as well as returning the corresponding numeral 17.

Lest it seem that by handling these complexities we have
lost any incisive power in the approach, I should note that it
is not always the case that the processing of a term results in
the obvious (i.e., normal-form) designator of its referent For
example, I will prove that, in traditional Lisps, the expression

 (car '(a b c)) [8]

both designates and returns the atom a. Just from the contrast
between these two examples ([7]and [8]) it is clear that tradi-
tional Lisp processing and Lisp designation do not track each
other in any trivially systematic way.

88 Indiscrete Affairs · I

Although this approach will be shown successful, I will ul-
timately abandon the strategy of characterising the full seman-
tics of standard Lisp (as exemplified in my 1Lisp dialect), since
the confusion about the semantic import of evaluation will in
the end make it virtually impossible to say anything coherent
about designation. This, after all, is my goal: to judge 1Lisp, not
merely to characterise it. By the time I wrap up its semantical
analysis, I will have shown not only that Lisp is confusing, but
also (in detail) why it is confusing—giving us adequate prepa-
ration to design a dialect that corrects its errors.

 1d·iv The Role of a Declarative Semantics
One brief final point about this double semantics.

It should be clear that it is impossible to specify a normal-
ising processor without a pre-computational, non-procedural
theory of semantics. If you do not have an account of what
structures mean, independent of and how they are treated
by the processor, there is no way to say anything substantial
about the semantical import of the function that the proces-
sor computes. On the standard approach, for example, it is
impossible to say that the processor is correct, or semantically
coherent, or semantically incoherent, or any such thing; it would
merely be what it is. Given some account of what it does, one
can compare this to other accounts: thus it would for example
be possible to prove that a specification of it was correct, or that
an implementation of it was correct, or that it had certain other
independently definable properties (such as that it always ter-
minated, that it used certain resources in certain fashion, etc.).
In addition, given such an account, one could prove properties
of programs written in the resulting language—thus, from a
mathematical specification of the processor of algol, plus the
listing of an algol program, it might be possible to prove that
that program met some specification (such as that it sorted
its input, or whatever). But all of these things are compatible

a64

a65

 3b · Dissertation — Introduction (V0.80)

 89

with the system being a purely mechanical system—such as a
device that sorted apples into different bins, or for that matter
was a car. However none of these questions are the question
I am trying to answer here—namely: what is the semantical
character of the processor itself?

In the particular case I am considering, I will be able to
specify the semantical import of the function computed by
Lisp’s evaluation regimen (i.e., by eval—this is content of the
evaluation theorem), but only by first laying out both declara-
tive and procedural theories of Lisp. Again, I will be able to
design 2Lisp only with reference to this pre-computational
theory of declarative semantics. It is a simple point, which I
am perhaps repeating too often, but it is important to make
clear how the semantical reconstruction I am endorsing is a
prerequisite to the design of 2Lisp and 3Lisp, not a post-facto
method of analysing them.

 1e Procedural Reflection
Now that we have assembled a minimal vocabulary with
which to talk about computational processes and matters of
semantics, it is possible to sketch the architecture of reflection
that I will present in the final chapter of the dissertation.

I will start rather abstractly, with the general sense of re-
flection sketched in §1·b, and then make use of both the
Knowledge Representation Hypothesis and the Reflection
Hypothesis to define a more restricted goal. Next, I will em-
ploy the characterisations of [serially] reduced computational
processes and of computational semantics to narrow this goal
even further. At each step in this progressive focusing process,
it will become increasingly clear what would be be involved in
actually constructing an authentically reflective computational
language. By the end of this section I will be able to suggest
the particular structure that, in [dissertation] chapter 5, will
be embodied in the 3Lisp design.

90 Indiscrete Affairs · I

 1e·i A First Sketch
Begin very simply. At the outset, I characterised reflection in
terms of a process shifting between a pattern of reasoning
about some subject matter, world, or task domain, to reason-
ing reflectively about its thoughts and actions in that world.
I said in the Knowledge Representation Hypothesis that the
only current candidate architecture for a process that reasons
at all (even derivatively) is one constituted in terms of an in-

terior process manipulating rep-
resentations of the appropriate
knowledge of that domain. We
can see in terms of the process
reduction model of computation
a little more clearly what this
means. For the process I called
Chequers to reason about the
world of finance, I suggested that
it be [serially] composed of an

ingredient process p manipulating a structural field s consist-
ing of representations of cheque books, credit and debit en-
tices, currency exchange rates, and so forth. Thus we were led
to the image depicted in figure 4 (reproduced here as figure 9).

Next, I said in the Reflection Hypothesis that the only
suggestion we have as to how to make Chequers reflective is
this: as well as constructing process pc to “deal with” (that is:
manipulate symbols denoting) these various financial records,
we could also construct process q to deal with p and the struc-
tural field that pc manipulates. Thus q might specify what to do
when pc failed or encountered an unexpected situation, based
on what parts of pc had worked correctly and what state pc was
in when the failure occurred, and so on. Alternatively, q might
describe or generate parts of pc that had not been fully or ad-
equately specified. Finally, q might bring into existence a more
complex interpretation process for pc, or one particularised

Chequers

PC Processor

Structural Field

Figure 9

 3b · Dissertation — Introduction (V0.80)

 91

to suit specific circumstances—thereby engendering some-
thing we might want to call pc′. In general, whereas the world
of pc—the domain that pc models, simulates, reasons about,
onto which the declarative interpretation function φ maps its
ingredient symbols—is the world of finance, the correspond-
ing world of q is the world of the process pc and the structural
field it computes over.

I have spoken as if q were a different process from pc, but
whether it is really different from pc, or whether it is pc in a
different guise, or pc at a different time, is a question I will
defer for a while (in part because I have said nothing about
individuation criteria on processes). All that matters for the
moment is that there be some process that does what I have
said that q must do.

What is required, in order for q to reason about pc? Be-
cause q, like all the processes we are considering, is assumed
to be [serially] composed, what is needed is what is always
needed: structural representations of the relevant facts about pc.
What would such representations be like? First, they must
be expressions (statements or symbols), formulated with re-

spect to some theory, describ-
ing or representing the state
of process pc (we can begin
to see how the theory-relative
mandate on reflection from
§1·b is making itself evident).
Second, in order to actually
describe pc, they must be caus-
ally connected to pc in some ap-

propriate way (another of the general requirements). Thus we
are considering a situation such as that depicted in figure 10,
where the field (or field fragment) sP contains these causally
connected structural descriptions.

Figure 10 is of course incomplete, in that it does not sug-

S

Reflective
Chequers

SP

Q

Figure 10

92 Indiscrete Affairs · I

gest how sP should relate to pc (answering this question is our
current quest). Note however that reflection must be able to
recurse, implying the additional possibility of something like
the image depicted in figure 11.

Where might an encodable procedural theory come from?
There are two possible sources: in the semantical reconstruc-
tion to be undertaken presently (before 3Lisp is designed) I
will have presented a full theory of the (non-reflective ver-
sions of the) dialects under development; this is one candidate
source for an appropriate theory. But given that for the mo-
ment we are considering only procedural reflection, the sim-

pler procedural com-
ponent will suffice (in
contrast to the general
case, where we would
need to encode the full
theory of computa-
tional significance).

The second source
of a theoretical ac-
count, quite simi-
lar in structure but

even closer to the one we will adopt, is what we will call the
metacircular processor, which is worth a brief examination.

 1e·ii Metacircular Processors
In any computational formalism in which programs are acces-
sible as first class structural fragments, it is possible to con-
struct what are commonly known as metacircular interpreters:
“meta” because they operate on (and therefore terms within
them designate) other formal structures, and “circular” be-
cause they do not constitute a definition of the processor, for
two reasons: (i) they have to be run by that processor in order
to yield any sort of behaviour (since they are programs, not

Re�ective
Chequers

SP

SP

SQ

Q'

Figure 11

 3b · Dissertation — Introduction (V0.80)

 93

processors, strictly speaking); and (ii) the behaviour they would
thereby engender can be known only if one knows beforehand
what the processor does. Nonetheless, such processors are of-
ten pedagogically illuminating, and they will play a critical role
in our development of the 3Lisp reflective model. In line with
my general strategy of reserving the word “interpret” for the
semantical interpretation function. I will henceforth call such
processors metacircular processors.

In the presentation of 1Lisp and 2Lisp I will construct
metacircular processors (mcps); the 2Lisp version is presented
in figure 12, on the next page (details will be explained in [dis-
sertation] chapter 4; at the moment I mean only to illustrate
the general structure of this code). The basic idea is that if
this code were processed by the primitive 2Lisp processor. the
process that would thereby be engendered would be behav-
iourally equivalent to that of the primitive processor itself.
In other words, if we were mathematically to take processes
as functions from structure onto behaviour, and if we name
the processor presented in figure 12 mcp2L, and the primitive
2Lisp processor p2L, then if we taken ‘≃’ to mean behaviourally
equivalent, then we should be able to prove the following, in
some appropriate sense (this is the sort of proof of correctness
one finds in for example Gordon14):

 p2L(mcp2L) ≃ p2L [9]

It should be recognised that the equivalence spoken of here is
a global equivalence; by and large the primitive processor, and
the processor resulting from the explicit running of the mcp,
cannot be arbitrarily mixed (as already mentioned, and as a
more detailed discussion in [dissertation] chapter 5 will for-
malise). For example, if a variable is bound by the underlying
processor p2L it will not be able to be looked up by the metacir-
cular code. Similarly, if the metacircular processor encounters
a control structure primitive, such as a throw or a quit, it will

14. Gordon (1973 and 1975).

94 Indiscrete Affairs · I

not cause the metacircular processor itself to exit prematurely,
or to terminate. The point, rather, is that if an entire computa-
tion is mediated by the explicit processing of the mcp, then the
results will be the same as if that entire computation had been
carried out directly.

We can merge these results about mcps in general with the
diagram in figure 9 as follows: if we replaced p in the figure

(define NORMALISE
 (lambda expr [exp env cont]
 (cond [(normal exp) (cont exp)]
 [(atom exp) (cont (binding exp env))]
 [(rail exp) (normalise-rail exp env cont)]
 [(pair exp) (reduce (car exp) (cdr exp) env cont)])))

(define REDUCE
 (lambda expr [proc args env cont]
 (normalise proc env
 (lambda expr [proc!]
 (selectq (procedure-type proc!)
 [impr (if (primitive proc!)
 (reduce-impr proc! args env cont)
 (expand-closure proc! args cont))]
 [expr (normalise args env
 (lambda expr [args!]
 (if (primitive proc!)
 (reduce-expr proc! args! env cont)
 (expand-closure proc! args! cont))))]
 [macro (expand-closure proc! args
 (lambda expr [result]
 (normalise result env cont)))])))))

(define EXPAND-CLOSURE
 (lambda expr [closure args cont]
 (normalise (body closure)
 (bind (pattern closure) args (env closure))
 cont)))

 Figure 12

 3b · Dissertation — Introduction (V0.80)

 95

with a process that resulted from p processing the metacircu-
lar processor mcp (for the appropriate language—in this case
assumed to be Fortran), we would still correctly engender the
behaviour of Chequers, as depicted in figure 13. Furthermore,
this replacement could also recurse, as shown in figure 14, on
the next page. Admittedly, under the standard interpretation,
each such replacement would involve a dramatic decrease in
efficiency, but the important point is that, modulo those tem-
poral issues, the resulting behaviour would in some sense still
be correct.

 1e·iii Procedural Reflective Models
We are now in a position to unify the suggestion made at the
end of §1·e·ii, on having q reflect upwards, with the insights
embodied in the mcps described in the previous section, to de-
fine what I will call the procedural reflective model. The fun-
damental insight arises from the eminent similarity between
figures 10 and 11, on the one hand, compared with figures 13

and 14, on the other. These
diagrams do not represent
exactly the same situation,
but the approach will be to
converge on a unification of
the two.

I said earlier that in order
to satisfy the requirements
on the q of §1·e·ii we would
need to provide a causally
connected structural encod-

ing of a procedural theory of our dialect (Lisp in this case)
within the accessible structural field. In the immediately pre-
ceding section we have seen something that is approximately
such an encoding: the metacircular processor. However—and
here I refer back to the six properties of reflection set out in

S

Chequers
MCP

P
P

Figure 13

96 Indiscrete Affairs · I

§1·b·iii—in the normal course of events the mcp lacks the
appropriate causal access to the state of p: whereas any pos-
sible state of q could be procedurally encoded in terms of the
metacircular process (i.e., given any account of the state of p
we could retroactively construct appropriate arguments for
the various procedures in the metacircular processor so that
if that metacircular processor were run with those arguments
it would mimic p in the given state), in the normal course of
events the state of p will not be so encoded.

This similarity, however, does suggest the form of the solu-
tion.

Suppose that p were never run directly, but were always run
in virtue of the explicit mediation of the metacircular proces-
sor—as, for example, in figure 13 and 14. Then at any point
in the course of the computation, if that running of one level

of the mcp were inter-
rupted, and the argu-
ments being passed
around were used by
some other procedures,
they would be given
just the needed infor-
mation: correct caus-
ally connected repre-
sentations of the state
of the process p prior
to the point of reflec-

tion. The mcp would of course have to be modified in order
to support such an interruption; the point however is that the
mcp is already trafficking in the requisite causally connected
representations.

There are however evident problems with this approach.
First, if p were always run through the mediation of the

S

Chequers MCP

P

MCP

P

P

Figure 14

 3b · Dissertation — Introduction (V0.80)

 97

metacircular processor mcp, p would as a result almost surely
be unnecessarily inefficient. Second, as so far stated the pro-
posal seems to deal with only one level of reflection. What if
the code that was given these structural encodings of p’s state
was itself to reflect? This query suggests that providing a gen-
eral mechanism for reflection would generate an infinite re-
gress: not only should the mcp be used to run the base (“level
0”) programs, but the mcp should be used to run the level 1
mcp. And so on. That is: all of an infinite number of mcps
should be run by yet further mcps, ad infinitum.

Setting aside the obvious vicious regress for a moment, note
that this seems otherwise to be a reasonable suggestion. The
potentially infinite (i.e., indefinite) set of reflecting processes q
are almost indistinguishable in basic structure from the infi-
nite tower of mcps that would result. Furthermore the mcps
would contain just the correct structurally encoded descrip-
tions of processor state. We would still need to modify the
whole set of mcps, so that an appropriate interruption or re-
flective act could make use of the tower of processes, but it is
nevertheless evident that, to a first degree of approximation,
this proposal has the proper character.

The fundamental “trick” of 3Lisp (i.e., of the model of pro-
cedural reflection being proposed) hinges on the fact that, it
turns out, we can effectively posit, as a stipulative but extremely
useful fiction, that the primitive reflective processor is engendered
by an infinite number of recursive instances of the mcp, each run-
ning a version one level below. That is: 3Lisp will be defined to
be isomorphic to that infinite limit. This turns out to be legit-
imate—i.e., the implied infinite regress is not after all prob-
lematic—since only a finite amount of information is encoded
in it; at all but a finite number of the bottom levels, each mcp
will merely be running a copy of the mcp. Because we, as the
language designers, know exactly how the language runs, and

98 Indiscrete Affairs · I

because we also know what the mcp is like, we can provide this
infinite numbers of levels, to use current jargon, purely virtu-
ally. As I will explain in detail in [dissertation] chapter 5, such
a virtual simulation turns out to be perfectly well-defined.

Once the changes are made to support appropriate inter-
ruption and resumption at any arbitrary level, it is no longer
appropriate to call the processor a metacircular processor, since
it becomes inextricably woven into the fundamental architec-
ture of the language (as will be explained in detail in [disser-
tation] chapter 5). This is why, as suggested above, I call it a
reflective processor. Nonetheless its genealogical roots in the
abstract idea of an infinite tower of metacircular processor
should be clear.

To provide a little bit of concrete grounding for this sugges-
tion, I will explain just briefly the “interruption adjustment”
we will make in order to allow this architecture to be used.

3Lisp supports what I will call reflective procedures—pro-
cedures that, when invoked, are run not at the level at which
the invocation occurred, but one level higher in the reflective

hierarchy. They are given, as arguments, those structures that
would have been passed around in the reflective processor, had it
always been running explicitly. The code for the resulting 3Lisp
reflective processor program is given in figure 15 (next page) in
part so that it may be compared with the (very similar) 2Lisp
meta-circular processor code given earlier in figure 12. The
most important difference lies on a single line, underlined here
for emphasis.

What is important about the underlined line (line 18) is
this: when a redex (application) is encountered whose car
normalises to a reflective as opposed to standard procedure
(the standard ones are called “simple” within this dialect), the
corresponding function, designated by the term (de-reflect
proc!), is run at the level of the reflective processor, rather than

 3b · Dissertation — Introduction (V0.80)

 99

by the processor. In other words the inclusion of this single
underlined line unleashes the full infinite reflective hierarchy.

 1 (define READ-NORMALISE-PRINT
 2 ... (lambda simple [level env stream]
 3 (normalise (prompt&read level stream) env
 4 (lambda simple [result] ; c-reply
 5 (block (prompt&reply result level stream)
 6 (read-normalise-print level env stream))))))

 7 (define NORMALISE
 8 ... (lambda simple [struc env cont]
 9 (cond [(normal struc) (cont struc)]
 10 [(atom struc) (cont (binding struc env))]
 11 [(rail struc) (normalise-rail struc env cont)]
 12 [(pair struc) (reduce (car struc) (cdr struc) env cont)]))

 13 (define REDUCE
 14 ... (lambda simple [proc args env cont]
 15 (normalise proc env
 16 (lambda simple [proc!] ; c-proc!
 17 (if (reflective proc!)
 18 ((de-reflect proc!) args env cont)
 19 (normalise args env
 20 (lambda simple [args!] ; c-args!
 21 (if (primitive proc!)
 22 (cont (proc! . args!))
 23(normalise (body proc!)
 24 (bind (pattern proc!) args! (environment proc!))
 25 cont))))))))

 26 (define NORMALISE-RAIL
 27 ... (lambda simple [rail env cont]
 28 (if (empty rail)
 29 (cont (rcons))
 30 (normalise (1st rail) env
 31 (lambda simple [first!] ; c-first!
 32 (normalise-rail (rest rail) env
 33 (lambda simple [rest!] ; c-rest!
 34 (cont (prep first! rest!)))))))))

Figure 15 — The 3Lisp Reflective Processor

100 Indiscrete Affairs · I

Coping with that hierarchy will occupy part of [disserta-
tion] chapter 5, where I explain this all in much more depth
(including why the resulting virtual machine is in fact finite,
and how it can be implemented). Just this much of an intro-
duction, however, should convey, if only a glimpse of how re-
flection is possible.

 1e·iv Two Views of Reflection
The reader will have noted a tension between two ways in
which I have characterised the form of reflection we are aim-
ing at. On the one hand I have sometimes written as if there
were a primitive and noticeable reflective act, which causes
the processor to shift levels rather markedly (this is the ex-
planation that best coheres with some of our pre-theoretic
intuitions about reflective human thinking). On the other
hand, I have also just written of an infinite number of levels
of re1ective processors, each essentially implementing the one
below—a story according to which it is not coherent either
to ask at which level q is running, or to ask how many reflec-
tive levels are running. On this “infinite tower” account, there
is a strong some sense in which all levels are running at once,
in exactly the same sense that both the Lisp processor inside
your Lisp-based editor, and your editor itself, and the machine
language code that underpins the implementation of Lisp, are
all running at once, when you use the editor. It is of course not
as if Lisp, the editor, and the machine language are running si-
multaneously in the sense of side-by-side or independently. This
is not a parallel computing scheme being described. Rather, in
each case one, being “interior” to the other, supplies the anima
or agency of the outer one (machine language processor ani-
mating the Lisp processor, which in turn animates the editor).
It is just this sense in which the higher levels in the 3Lisp re-
flective hierarchy are always running: each of them is in some
sense within (interior to) the processor at the level below it, in
such a way that it thereby engenders it.

 3b · Dissertation — Introduction (V0.80)

 101

Call the account that views reflection as a case of a single
locus of agency stepping between levels the level-shifting

view. And call the other view that of an infinite tower. I will
not take a principled view on which is correct; for certain
purposes one is simpler, for others the other. What matters
most is to recognise their behavioural equivalence—or to put
it in a little more detail: the fundamental architectural thesis
underlying not only 3Lisp in particular but the general model
of procedural reflection being proposed here is that embracing
the limiting behaviour of the tower view is an appropriate ideal
in terms of which to design, understand, and implement the
level-shifting view.

Though perhaps more initially intuitive, the level-shifting ac-
count turns out to be more complex than the tower view. To
illustrate it, consider the following account of what is involved
in constructing a reflective dialect—in part by way of review,
but also in order to suggest how it is that a practical reflective
dialect could be finitely constructed.

1. As I have repeatedly said, in order to design a reflec-
tive language one must provide a complete theory of
the given calculus expressed in its own language. I call
this the reflective processor—it is required on both
accounts.

2. You must arrange things so that, when the process re-
flects—i.e., when, on the level-shifting view, the locus
of control shifts “upwards”—all of the structures used
by the reflective processor (the formal structures des-
ignating the theoretical entities posited by the theory)
are available for inspection and manipulation. In any
particular case, these to-be-provided structures must
correctly encode the state that the processor was in prior
to the reflective level-shift, assuming that it had been run-
ning all the while (this is where the tower view provides

a67

102 Indiscrete Affairs · I

structure and substance—fills in the technical de-
tails—for the level shifting view).

3. You must also ensure, when the (level-shifting) process
comes to the point of “shifting down” again, that base-
level processing is resumed in accordance with the facts
encoded in the structures being passed around at the im-
mediately higher reflective level.

As a minimal case, take a situation where the user process
shifts upwards, but does nothing; and then shifts down again.
At the point of shifting up, the situation should merely be one
where the processor would process the reflective processor
code explicitly, as if it had been doing so all along. At the point
of shifting down, it would take up running the base-level code
directly (i.e., non-reflectively), again as if it had been doing that
all along, but also (of course it must be proved that these are
equivalent) exactly in accord with the state of the structures
being passed around in the reflective processor code at the
point of down-shifting. Such a situation, in fact, is so simple
that it could not be distinguished (except perhaps in terms of
elapsed time) from pure non-reflective interpretation.

The situation would get more complex, however, as soon
as the user is given any power. Two provisions in particular
are crucial.

First, the whole purpose of a reflective dialect is to allow
the user to have his or her own programs run along with, or
in place of, or between the steps of, the reflective processor.
One must in other words provide an abstract machine with
the ability for the programmer to insert code—in convenient
ways and at convenient times—at any level of the reflective
hierarchy. Suppose, for example, we were to wish to have a
particular λ-expression closed only in the dynamic environ-
ment of its use, rather than in the lexical environment of its
definition (i.e., suppose we were to want “dynamic scoping” for

 3b · Dissertation — Introduction (V0.80)

 103

a given λ-expression, even though lexical scoping is the system
default). Needless to say, the reflective processor contains code
that performs the requisite operations needed to implement
the default behaviour for lexical closures. Given that the pro-
grammer can assume that, upon reflection, the reflective pro-
cessor code is being explicitly processed, he or she can supply,
for the λ-expression in question, an appropriate alternate piece
of code for the reflective process, in which different actions are
taken so as to provide the special λ-expression with dynamic
scoping behaviour. By simply inserting this code into the cor-
rect level, (s)he can use variables bound by the reflective model
in order to fit gracefully into the overall processing regimen.
Appropriate hooks and protocols for such insertion, of course,
must be provided, but they need be provided only once. Fur-
thermore, the reflective processor code (i.e., reflective model)
will contain code showing how this hook is treated.

All of these requirements are met by the underlined line
18 in the reflective processor program of figure 15. That line
indicates how the user code will be inserted, what context it
will run it, what variables will be bound to what structures
containing what information, etc.

Second, as well as providing for the arbitrary interpretation
of special programs at the reflective level, the language design-
er must also enable the user to modify the explicitly available
structures provided in the reflective model. Though this abil-
ity is easier to design than the former, its correct implementa-
tion is trickier. An example will make this clear. As already
indicated, the 3Lisp reflective processor deals explicitly with
both environment and continuation structures. Upon reflect-
ing, user programs can at will access these structures that, at
the base level, are purely implicit. Suppose that a user writes
reflective code that does two things. First, it modifies the en-
vironment structure being passed around at the first reflective
level (e.g., suppose it changes the binding of a variable bound

104 Indiscrete Affairs · I

by some procedure that is running “somewhere up the stack,”
in the way that might be provided by a typically debugging
package). Second, it changes the continuation structure (des-
ignating the continuation function) so as to cause some pro-
cedure that is currently running to, upon its return, bypass its
immediate caller, and instead return its result to the procedure
that called that procedure. Then, once this user code has ef-
fected these two changes, it “returns”—which is to say, it “drops
back down” to other base-level code, and no longer runs at the
reflective level.

I said above that, upon this kind of semantic or reflective
descent, the base-level program will again be processed “di-
rectly.” But of course it must be processed in such a way as to
honour the changes indicated by these modified structures—
not in the way that it would have proceded, prior to the reflec-
tion. The user’s reflective modifications, in other words, must
matter—must be noticed. This is the (downwards direction of)
the causal connection aspect that is so crucial to true reflection.

 1e·v General Comments
The details of the proposed architecture have emerged from
detailed considerations of process reduction, computational
semantics, and meta-circular processing. It is interesting to
draw back and to see the extent to which the global proper-
ties of the resulting architecture match our pre-theoretic intu-
itions about reflection.

First, it is simple to see that the proposed architecture hon-
ours all six requirements laid out in §1.b.iii:

1. It is causally connected;
2. It is theory-relative;
3. It involves an incremental “stepping back,” rather than a

full (and potentially vicious) instantaneous “reflexion”;
4. Finer-grained control is provided over the processing

of lower level structures;

 3b · Dissertation — Introduction (V0.80)

 105

5. It is only partially detached (3Lisp reflective procedures
are still in and part of 3Lisp; they are still animated by
the same fundamental agency, since if one level stops
processing the reflective model, or some analogue of it,
all the processors “below” it cease to exist): and

6. The reflective powers of 3Lisp are primitively provided.

Thus in this sense at least it is fair to count the architecture a
success.

Other questions—such as about the locus of self, the con-
cern as to whether the potential to reflect requires that one
always participate in the world indirectly rather than directly,
and so forth—turn out to be about as difficult to answer for
3Lisp as they are to answer in the case of human reflection.
In particular, the solution I have proposed does not answer
the question I posed earlier, about the identity of the reflected
processor: is it p that reflects, or is it another process q that
reflects on p? The “reflected process” is neither quite the same
process, nor quite a different process; it is in some ways as
different as an interior process, except that since it shares the
same structural field it is not as different as an implementing
process. No more informative answer will be forthcoming un-
til we define individuation criteria on processes much more
precisely—and, perhaps more strikingly, there seems no par-
ticular reason to answer the question one way or another. It is
tempting (if dangerous) to speculate that the reason for these
difficulties in the human case is exactly why they do not have
answers in the case of 3Lisp: they are not, in some sense, “real”
questions. But it is premature to draw this kind of parallel;
our present task is merely to clarify the structure of proposed
solution.

 1f Lisp as an Explanatory Vehicle
There are any number of reasons why it is important to work
with a specific programming language, rather than abstractly

106 Indiscrete Affairs · I

and in general (for pedagogical accessibility, as a repository
for emergent results, as an example to test proposed technical
solutions, and so forth). Furthermore, commonsense consid-
erations suggest that a familiar dialect, rather than a totally
new formalism, would better suit our purposes. On the other
hand there are no current languages that are categorically and
semantically rationalised in the way that the proposed theory
of reflection demands; according to the mandate that “reflec-
tion is intelligibly implementable only on a semantically clari-
fied basis,” it is not an option to endow any extant system with
reflective capabilities without first subjecting it to substantial
modification. It would be possible to present a new system
embodying all the necessary modifications and features, but
it would be difficult for the reader to sort out which architec-
tural features were due to what concern. In this dissertation,
therefore, I have adopted the strategy of presenting a reflective
calculus in two steps: first, by modifying an existing language
to conform to the outlined semantical mandates (2Lisp); and
second, by extending the resulting rationalised language with
reflective capabilities (3Lisp).

Once this overall plan has been agreed, the question arises
as to what language should be used as a basis for this two-
stage development Since my present concern is with procedural
rather than with general reflection, the relevant class of poten-
tial languages includes essentially all programming languages,
but excludes exemplars of the declarative tradition: logic, the
λ-calculus, specification and representation languages, and
so forth. Furthermore, we need a programming language—a
procedural calculus—with at least the following properties:

1. Though not a formal requirement, it helps for the cho-
sen language to be simple. By itself reflection is compli-
cated enough that, especially as an initial illustration of
the coherence and power of the architecture, it seems

a68

 3b · Dissertation — Introduction (V0.80)

 107

recommended to introduce it into a formalism of min-
imal internal complexity;

2. It must be possible to access program structures as
first-class elements of the language’s structural field;

3. Meta-structural primitives must be provided (the abil-
ity to mention structural field elements, such as data
structures and variables, as well as to use them); and

4. The underlying architecture should facilitate the em-
bedding, within the calculus, of the procedural compo-
nents of its own meta-theory.

The second property could be added to a language: we could
devise a variant on algol, for example, in which algol pro-
grams were made an extended data type, but Lisp already pos-
sesses this feature. In addition, since (in the formal semantical
analysis presented in following [dissertation] chapters) I will
use an extended λ-calculus as the meta-language, it is natural
to use a procedural calculus that is functionally oriented. Fi-
nally, although full-scale modern Lisps are as complex as any
other languages, both Lisp 1.5 and Scheme have the requisite
simplicity.

Lisp has other recommendations as well. Because of its
support of accessible program structures, it provides consider-
able evidence of exactly the sort of inchoate reflective behav-
iour that it has been my aim to reconstruct The explicit use
of eval and apply, for example, provides considerable fodder
for subsequent discussion, both in terms of what they do well
and how they are confused. In [dissertation] chapter 2, for
example, I describe half a dozen types of situation in which
a standard Lisp programmer would be tempted to use these
meta-structural primitives, only two of which in the deepest
sense have anything to do with the explicit manipulation of
expressions; the other four, I will argue, ought to be treated di-
rectly in the object language—and their use of metastructural

108 Indiscrete Affairs · I

machinery understood to be no more than a “work-around”
for fundamental failures in Lisp’s original design. And finally,
and non-trivially, Lisp is the lingua franca of the ai commu-
nity; this fact alone makes it an eminent candidate.

 1f·i 1Lisp as a Distillation of Current Practice
The decision to use Lisp as a base does not solve all of cur
problems, since the name “Lisp” still refers to a wide range of
languages and dialects. For purposes of this dissertation it has
seemed simplest to define a simple kernel, not unlike Lisp 1.5,
as a basis for further development, in part to have a fixed and
well-defined target to set up and criticise, and in part so that
I can collect into one dialect the features that prove most im-
portant for subsequent analysis. I take Lisp 1.5 as the primary
source for the result, which I have called 1Lisp, although some
facilities I will ultimately want to examine as (often inchoate)
examples of reflective behaviour—such as catch and throw
and quit—have been added to the repertoire of behaviours
manifested in McCarthy’s original design. Similarly, I have
included macros as a primitive procedure type, as well as in-
tensional and extensional procedures of the standard variety
(“call-by-value” and “call-by-name,” in standard computer sci-
ence parlance, although I avoid these terms, since I reject the
notion of “value” entirely).

It turns out not to be entirely simple to present 1Lisp. given
my theoretical biases, since so much of what I will ultimately
reject about it comes so quickly to the surface in explaining it.
However I have felt that it is important to present this formal-
ism without modification, because of the role I ask it to play
in the structure of the overall argument. In particular, my de-
sideratum for the dialect is not that it be clean or coherent, but
rather that it serve as a vehicle in which to examine a body of
practice suitable for subsequent reconstruction. To the extent
that I make empirical claims about semantic reconstruction, I

a69

 3b · Dissertation — Introduction (V0.80)

 109

use 1Lisp as evidence in its role as being a model of all extant
Lisp practice. It is therefore theoretically critical, given this
role, that I leave this practice as intact as possible, free of my
own theoretical biases. Even though it is a dialect of my own
design, therefore, I have intentionally but uncritically forged it
in terms of received notions of evaluation, lists, free and global
variables, and so forth.

As an example of the style of analysis to be engage in, figure
16 gives a diagram of the 1Lisp category structure—to be con-
trasted with the category structure of 2Lisp and 3Lisp, which

has been designed to satisfy the category alignment mandate.
The intent of the diagram is to show that in 1Lisp (as in any
computational calculus) there are a variety of ways in which
structures or s-expressions may be categorised—represented
in turn by each of the vertical columns. The point I am at-
tempting to demonstrate is the (unnecessary) complexity of
interaction between these various categorical decompositions.

Consider each of these various 1Lisp categories in brief. The
first column (notational) is categorised by the lexical categories
accepted by the reader (including strings that are parsed into
notations for numerals, lexical atoms, and “list” and “dotted-
pair” notations for pairs). Another categorisation (structural)
is in terms of the primitive types of s-expression (numerals,

Numerals
Atoms
Pairs

T or NIL

Numerals
Atoms

(Lambda…)

(quote …)

Lists
Applications

Truth values
Numbers

Functions
S-expressions

Sequences

Numerals
Labels

Dotted pairs

“Lists”

✘

Notational Structural Derived
Structural

Procedural Declarative

Numerals
Atoms
Pairs
Lists

Figure 16 — The Category Structure of Lisp 1.5

110 Indiscrete Affairs · I

atoms, and pairs); this is the categorisation typically revealed
by the primitive structure typing predicates (in 1Lisp I call this
procedure type, but it is traditionally encoded in an amalgam
of atom and numberp). A third traditional categorisation (de-
rived structure) includes not only the primitive s-expression
types but also the derived notion of a list—a category built
up from some pairs (those whose cars are, recursively, lists)
and the atom nil. A fourth taxonomy (labeled procedural con-
sequence) is embodied by the primitive processor: thus 1Lisp’s
evaluation processor (eval) sorts structures into various cate-
gories, each handled differently. This is the “dispatch” categori-
sation that one typically finds at the top of metacircular defini-
tions of eval and apply. In most Lisp metacircular processors
six categories are discriminated:

1. The self-evaluating atoms t and nil;
2. The numerals;
3. The other atoms, used as variables or global function

designators, depending on context;
4. Lists whose first clement is the atom lambda, used to

encode applicable functions;
5. Lists whose first clement is the atom quote; and
6. Other lists, which in evaluable positions represent

function application.

Finally, the fifth taxonomy (declarative import) has to do with
declarative semantics—i.e., discriminates categories of struc-
ture based on their signifying different sorts of semantic enti-
ties. Once again a different category structure emerges: appli-
cations and variables can signify semantic entities of arbitrary
type except that they cannot designate procedures (since 1Lisp
is first-order); the atoms t and nil signify Truth and Falsity;
general lists, plus again (in different contexts) the atom nil,
signify enumerations (sequences): the numerals signify num-
bers; and so on and so forth.

 3b · Dissertation — Introduction (V0.80)

 111

The reason why the demerits of this non-alignment of cate-
gories multiply in a reflective dialect is that reflective programs
need to know about all of them, in different situations and for
different purposes—and also about the relationships between
and among them (as, impressively, all human Lisp program-
mers do). And remember, too, that as one climbs from reflec-
tive level 1 to yet higher reflective levels, the combinatorics of
non-alignment would multiply correspondingly. I need not
dwell on the evident disarray that would likely result.

One other example of 1Lisp behaviour will be illustrative. I
have mentioned above that 1Lisp requires the explicit use of
apply in a variety of circumstances. These include the follow-
ing:

1. When an argument expression designates a function
name, rather than a function—as for example in

(apply (car '(+ – *)) '(2 3))

2. When the arguments to a multiple-argument proce-
dure are designated by a single term, rather than des-
ignated individually. Thus if x evaluates to the list (3 4),
one must use (apply '+ x) rather than (+ x) or (+ . x).

3. When a function is designated by a variable rather
than by a global constant. Thus one must use:

(let ((fun '+)) (apply fun '(1 2)))

rather than the simpler:

(let ((fun '+)) (fun 1 2))

4. When the arguments to a function are “already evalu-
ated,” since apply, although itself extensional (it is an
“expr”), does not re-evaluate the arguments even if the
procedure being applied is an expr. Thus one uses:

112 Indiscrete Affairs · I

(apply '+ (list x y))

rather than:

(eval (cons '+ (list x y)))

As I will show, in 2Lisp and 3Lisp only the first of these will
require explicitly mentioning the processor function by name,
because it inherently deals with the designation of expressions,
rather than with the designation of their referents. Because of
their category alignment, 2Lisp and 3Lisp treat the other three
cases adequately in the object language.

 1f·ii The Design of 2Lisp
Though it meets the criterion of simplicity, 1Lisp provides
more than ample material for further development, as the pre-
vious examples suggest. Once I have introduced it, as men-
tioned earlier, I subject it to a semantical analysis that leads us
into an examination of computational, semantics in general,
as described in the previous section. The search for semantical
rationalisation, and the exposition of the 2Lisp that results,
occupies a substantial part of the dissertation, even though the
resulting calculus still fail to meet the requirements of proce-
dural reflection (as befitting the underlying thesis that reflec-
tion is relatively straightforward, once these semantical issues
are taken care of). I discussed what semantic rationalisation
comes to in general in a previous section (§1.f.1); here I sketch
how its mandates are embodied in the design of 2Lisp.

The most striking difference between 1Lisp and 2Lisp is that
the latter rejects evaluation in favour of independent notions
of simplification and reference. Thus, 2Lisp’s processor is not
called eval, but normalise, where by normalisation I refer to
a particular form of expression simplification that takes each
structure into what I call a normal-form designator of that
expression’s referent (making normalisation designation-pre-

 3b · Dissertation — Introduction (V0.80)

 113

serving). Details are provided in [dissertation] chapter 4, but
a sense of the resulting architecture can be given here.

Simple object level computations in 2Lisp (those that do
not involve meta-structural structures designating other ele-
ments of the Lisp field) are treated in a manner that looks very
similar to 1Lisp. The expression (+ 2 3), for example, normalises
to 6, and the expression (= 2 3) to $f (the primitive 2Lisp bool-
ean constant designating falsity). On the other hand an obvi-
ous superficial difference is that in 2Lisp meta-structural terms
are not automatically dereferenced. Thus the quoted term 'x,
which in 1Lisp would evaluate to x, normalises in 2Lisp to
itself (that is: to 'x). Similarly, whereas (car '(a . b)) would
evaluate in 1Lisp to a, in 2Lisp it normalises to 'a. Similarly, in
1Lisp (cons 'a 'b) evaluates to the pair (a . b); in 2Lisp the cor-
responding expression would normalise to the handle '(a . b).

From these almost trivial examples, one might be tempted
to embrace the following idea: that the 2Lisp processor is just
like the 1Lisp processor, except that it puts a quote back on
before returning the result. But that reading is ill-advised; the
difference, more theoretically motivated, is more substantial in
terms of structure, procedural protocols, and semantics. For
starters 2Lisp, like Scheme, is statically-scoped and higher-or-
der; function-designating expressions may be passed as regu-
lar arguments. 2Lisp is also structurally different from 1Lisp;
there is no derived notion of list, but rather a primitive data
structure called a rail that serves the function of designating a
sequence of entities (pairs are still used to encode function ap-
plications). What in 1Lisp are called “quoted expressions” cor-
respond to the primitive structural type handle, not to appli-
cations framed in terms of a (pseudo) quote procedure; they
are also canonical (one per structure designated). The 2Lisp
notation 'x, in particular, is not an abbreviation for (quote
x,), but rather the primitive notation for the handle that is the
unique normal-form designator of the atom x. There are other

a70

114 Indiscrete Affairs · I

notational differences as well: rails are expressed with square
brackets (thus the expression ‘[1 2 3]’ notates a rail of three nu-
merals that in turn designates a sequence of three numbers),
and expressions of the form

(f a1 a2 … ak)

expand not into

(f . (a1 . (a2 . (… . (ak . nil)…))))

but instead into

(f . [a1 a2 … ak])

The category structure of 2Lisp is summarised in figure 17.

Closures, which have historically been treated as rather
curious entities somewhere in between functions and expres-
sions, emerge in 2Lisp as standard expressions; in fact I define
the term ‘closure’ to refer to a normal-form function designa-
tor. Not only are closures pairs, but all normal-form pairs are
closures, illustrating once again the category alignment that
permeates the design.

As stated above, all 2Lisp normal-form designators are
not only stable (self-normalising), but also side-effect free and
context-independent. A variety of facts emerge from this result.
First, the primitive processor procedure (normalise) can be
proved to be idempotent in terms of both result and total ef-
fect:

 ∀s [(normalise s) = (normalise (normalise s))] [10]

Consequently, as in the λ-calculus, the result of normalising
a constituent (in an extensional context) in a composite ex-
pression may be substituted back into the original expression,
in place of the non-normalised expression, yielding a partially
simplified expression having the same designation and same
normal-form as the original. So support for “partial evalua-

a71

 3b · Dissertation — Introduction (V0.80)

 115

tion” is in some sense an automatic feature of the two dialects.
In addition, in code-generating code such as macros and de-
buggers and so forth, there is no need to worry about whether
an expression has already been processed, since second and
subsequent processings will never cause any harm (nor, as it
happens, will they take any time).

All of the foregoing facts can in some sense be considered to
be simplifications embedded in the design of 2Lisp. Most of
2Lisp’s complexities emerge only when one consider forms

that designate other semantically significant forms. The in-
tricacies of such “level-crossing” expressions are the stock-in-
trade of a reflective system designer, and only by setting such
issues straight before we consider reflection proper will we face
the latter task adequately prepared.

Primitive procedures called name and referent (notation-
ally abbreviated ‘’ and ‘’, respectively) are provided to mediate
between sign and significant (they must be primitive because
without them the processor provably remains semantically
flat); thus (taking ‘⟹’ to mean “normalises to”):

 3 ≡ (name 3) ⟹ '3
 ''a ≡ (referent ''a) ⟹ 'a

Lexical Structural Procedural Declarative

Numerals
Booleans
Closures

Rails
Handles
Atoms
Pairs

Rails

Atoms
Pairs

Normal-form
Normal-form

Normal-form

Normal-form

Truth values
Numbers

Functions

Structures
Sequences

Digits
$T or $F

{closure…}

'…
[A1 … Ak]

alphanumeric
(A1 . A2)

Figure 17 — The Category Structure of 2Lisp (and 3Lisp)

116 Indiscrete Affairs · I

The issue of the explicit use of apply, mentioned in the dis-
cussion of 1Lisp, above, is instructive to examine in the 2Lisp
context, since it manifests both the structural and the se-
mantic differences between 2Lisp and its precursor dialect.
In 1Lisp, the functions eval and apply mesh in a well-known
mutually-recursive fashion. Evaluation is uncritically thought
to be defined over expressions, but it is much less clear what
application is defined over. On one view, apply is a functional
that maps functions and (sequences of) arguments onto the
value of the function at that argument position—thus making
it a second (or higher) order function. On another view, apply
takes two expressions as arguments, and has as its value a third
expression that designates the value of the function designated

by the first argu-
ment at the ar-
gument position
designated by the
second. In 2Lisp
I will call the first
of these notions
application and
the second reduc-

tion (the latter in
part because the
word suggests an
operation over
expressions, and

in part by analogy with the β-reduction of Church.15 Current
Lisp systems are less than lucid regarding this distinction (in
Maclisp, for example, the function argument is an expression,
whereas the arguments argument is not an expression, nor is
the value). The position I will adopt is depicted in figure 18 (to
be explained more fully in [dissertation] chapter 3).

φ φ φ

FD function
designator AD argument

designator VD value
designator

F function A argument V value

Application

Reduction

Figure 18

15. Church (1941).

 3b · Dissertation — Introduction (V0.80)

 117

The procedure reduce, together with normalise will of
course play a major role in the characterisation of 2Lisp, and in
the subsequently constructed reflective 3Lisp. It is worth not-
ing, however, that although it would be trivial to do so, there
is no reason to define a designator of the apply function, since
any term of the form:

(apply fun args)

would be equivalent in both designation and effect (i.e., would
be equivalent in full computational significance) to:

(fun . args)

In contrast, since it is a meta-structural function, reduce is
neither trivial to define (as is apply) nor recursively empty.

By way of summary, we can list the following as the most sa-
lient distinctions between 2Lisp and 1Lisp:

1. Scoping: 2Lisp is lexically scoped, in the sense that
variables free in the body of a lambda form take on the
bindings in force in their statically enclosing context,
rather than from the dynamically enclosing context at
the time of function application.

2. Functions: Functions are first-class semantical objects,
and may be designated by standard variables and ar-
guments. As a consequence, the function position in
an application (the car of a pair) is both procedurally
and declaratively “extensional,” and thus normalised in
exactly the same way as argument positions.

3. Processing: Evaluation is rejected in favour of inde-
pendent notions of simplification and reference. The
primitive processor is a particular kind of simplifier.
rather than being an evaluator. In particular, it nor-
malises expressions, returning for each input expres-
sion a normal-form co-designator.

118 Indiscrete Affairs · I

4. Declarative Semantics: A complete theory of declara-
tive semantics is postulated for all s-expressions. prior
to and independent of the specification of how they are
treated by the processor function—a pre-requisite to
the claim that the processor is designation-preserving).

5. Closures: Closures—normal-form function designa-
tors—are valid and inspectable s-expressions.

6. Normal Form: Though not all normal-form expres-
sions are canonical (functions, in particular, may have
arbitrarily many distinct normal-form designators),
nevertheless they are all stable (self-normalising), side-
effect free, and both declaratively and procedurally
context independent.

7. Semantically Flat: The primitive processor (desig-
nated by normalise) is semantically flat; in order to
shift level of designation one of the explicit semantical
primitives name () or referent () must be applied.

8. Category Alignment: 2Lisp is category-aligned (as in-
dicated in figure 17, above): there are two distinct struc-
tural types, pairs and rails, that respectively encode
function applications and sequence enumerations.
There is in addition a special two-element structural
class of boolean constants. There is no distinguished
atom nil.

9. Binding: Variable binding is co-designative, rather than
being either evaluative or designative, in the sense that
a variable normalises to what it is bound to, and there-
fore designates the referent of the expression to which
it is bound. Although I will speak of the binding of
a variable, and of the referent of a variable, I will not
speak of a variable’s value, since that term conflates
these two notions.

10. Identity: Identity considerations on normal-form des-

 3b · Dissertation — Introduction (V0.80)

 119

ignators are as follows: the normal-form designators
of truth-values, numbers, and s-expressions (the bool-
eans, numerals, and handles, respectively) are unique.
Normal-form designators of sequences (rails) and
functions (pairs) are not. No atoms are normal-form
designators of anything; therefore the question does
not arise in their case.

11. lambda: The use of lambda is purely an issue of ab-
straction and naming, and is completely divorced from
procedural type (extensional, intensional, macro, and
so forth).

 • • •
As soon as I have settled on the definition of 2Lisp, however, I
will begin to criticise it. In particular, I will provide an analysis
of how 2Lisp fails to be appropriately reflective, in spite of its
semantical cleanliness.

A number of problems with 2Lisp in particular emerge
as troublesome. First, it will turn out that the clean semanti-
cal separation between meta-levels is not yet matched with a
clean procedural separation. For example, too strong a separa-
tion between environments, with the result that intensional
procedures become extremely difficult tn use, shows that in
one respect, 2Lisp’s inchoate reflective facilities suffer from
insufficient causal connection. On the other hand, awkward
interactions between the control stacks of inter-level programs
will show how, in other respects, there is too much connection.
In addition, although I will demonstrate a metacircular im-
plementation of 2Lisp in 2Lisp, and will provide 2Lisp with
explicit names for its basic interpreter functions (normalise
and reduce), these two facilities will remain utterly uncon-
nected—an instance of a general problem to be discussed in
[dissertation] chapter 3 on reflection in general.

a72

120 Indiscrete Affairs · I

 1f·iii The Procedurally Reflective 3Lisp
From this last analysis will emerge the design of 3Lisp, a pro-
cedurally reflective Lisp and the last of the dialects to be con-
sidered here.

As presented in [dissertation] chapter 5, 3Lisp differs from
2Lisp in a variety of ways.

1. The fundamental reflective act is identified and accord-
ed tbe centrality it deserves in the underlying language
definition.

2. Each reflective level is granted its own environment
and continuation structure, with the environments
and continuations of the levels below it accessible as
first-class objects (inheriting a Quinean stamp of onto-
logical approval, since they can be the values of bound
variables).

3. As mentioned in the earlier discussion these envi-
ronments and continuations are theory relative. The
(procedural) theory is embodied in the 3Lisp reflective
model, a causally connected variant on the metacircu-
lar interpreter of 2Lisp discussed in §1.e.

4. Surprisingly, the integration of reflective power into
the metacircular—now reflective—model is itself ex-
tremely simple (though to implement the resulting ma-
chine is not trivial).

5. Reflecting its more complete nature, in a number of
ways 3Lisp is notably simpler than 2Lisp.

Once all these moves have been taken it will be possible to
merge the explicit reflective version of normalise and reduce,
and the similarly named primitive functions. In other words
the 3Lisp reflective model unifies what in 2Lisp were separate:
primitive names for the underlying processor, and explicit
metacircular programs demonstrating the procedural struc-
ture of that processor.

a73

 3b · Dissertation — Introduction (V0.80)

 121

It was a consequence of defining 2Lisp in terms of nor-
malise, a species of simplification, that the 2Lisp processor is
“semantically flat”: the semantical level of an input expression
is always the same as that of the expression to which it simpli-
fies.. An even stronger claim holds for function application.
Except in the case of the explicit level-shifting functions name
() and referent (), the semantical level of the result is also
the same as that of all of the arguments. This is all evidence
of the effort to drive a wedge between simplification and de-
referencing mentioned earlier. 3Lisp inherits this semantical
characterisation; note that it remains true even in the case of
reflective functions.

A semantically-flat (fixed-level) processor of this form—
one of the reasons 2Lisp was designed this way—enables an
important move: it becomes possible, though only in an ap-
proximate sense, to identify declarative meta levels with proce-
dural reflective levels. This does not quite have the status of a
claim, because it is virtually mandated by the Knowledge Rep-
resentation Hypothesis (furthermore, the correspondence is
somewhat asymmetric: declarative levels can be crossed with-
in a given reflective level, but reflective shifts always involve
shifts of designation). But it is instructive to realise that we
have been able to identify the reflective act (that makes avail-
able the structures encoding the processing state and so forth)
with two shifts: (i) the shift from objects to their names, and
(ii) the shift from tacit aspects of the background to objects.
Reification, that is, emerges as the first form of actively engaged
semantic ascent. Thus: (i) what was used prior to reflection is
mentioned upon reflecting; (ii) what was tacit prior to reflec-
tion becomes used upon reflection. When this behaviour is
combined with the ability for reflection to recurse, we are able
to lift structures that are normally tacit into explicit view in
one simple reflective step; we can then obtain access to desig-
nators of those structures in another.

a74

a75

122 Indiscrete Affairs · I

Later in the dissertation both the 3Lisp reflective model,
and a Maclisp implementation of it, will be provided by way
of definition. In addition, some hints will be presented of the
style of semantical equation that would be required for a tradi-
tional denotational-semantics style account of 3Lisp—though
it is important to admit that a full semantical treatment of
procedural reflection in general or of 3Lisp in particular has
yet to be worked out.

In a more pragmatic vein, however, and in part to show
how 3Lisp satisfies many of the desiderata that motivated the
original definition of the concept of reflection, I will pres-
ent a number of examples of programs defined in 3Lisp: a
variety of standard functions that make use of calls to the
processor, access to the implementation (debuggers, “single-
steppers,” and so forth), and non-standard “evaluation” (pro-
cessing) protocols. The suggestion will be made that the case
with which these powers can be embedded in “pure” programs
recommends 3Lisp as a plausible dialect in its own right. Nor
is this simply a matter of using 3Lisp as a theoretical vehicle
in which to model or implement these various constructs, or
of showing that such models fit naturally and simply into the
3Lisp dialect (as a simple continuation-passing scheme can
for example be shown to be adopted in Scheme). The claim is
stronger: that such functionality can be naturally embedded in
3Lisp in a manner that allows it to be congenially mixed (with-
out pre-processing or pre-compilation) with simpler, more stan-
dard forms of practice. Without the user normally having to
use (or even understand) explicit continuation-passing style,
nonetheless, at any point in the course of the computation, the
applicable continuation is easily and explicitly available (upon
reflection) for any programs that wish to deal with such things
directly. Similar remarks hold for other aspects of the control
structure and environment

One final comment about the 3Lisp architecture will relate

 3b · Dissertation — Introduction (V0.80)

 123

it to the two views on reflection—“level-shifting” and “infinite-
tower”—mentioned at the end of §1·e. Modulo the amount
of time it takes, processing mediated by the 3Lisp reflective
model is guaranteed to yield indistinguishable behaviour (at
least from a non-reflective point of view—there are subtle-
ties here) from basic, non-reflected processing. It is this fact
that allows us to make the abstract claim that 3Lisp runs in
virtue of an infinite number of levels of reflective models all
running at once. by an (infinitely fleet) overseeing processor
running at level ∞. The resulting infinite abstract machine is
well defined, for it is of course behaviourally indistinguish-
able from the perfectly finite 3Lisp that will already have been
laid out (and implemented). For some purposes 3Lisp is most
easily described in terms of this infinite tower—and in some
ways, too, it is the easiest model for the 3Lisp programmer
to have in mind, when writing programs. Such a programmer
can write programs to be interpreted at any reflective level,
and cannot tell that the full infinitude of levels are not being
run (the implementation surreptitiously constructs them and
places them in view each time the user’s program steps back to
view them), such a characterisation is usually more illuminat-
ing than talk of the processor “switching back and forth from
one level to another”. In terms of mathematical analysis, treat-
ing 3Lisp as a purely formal object, the infinite tower charac-
terisation would also be more likely to be preferred. On the
other hand, when taken as a model of psychologically intuitive
reflection—based on a vague desire to locate the self of the
machine at some level or other—the language of level-shifting
seems to be more highly recommended. Level-shifting is also
a major and constant concern for anyone person who designs
and constructs a 3Lisp implementation.

 1f·iv Reconstruction Rather Than Design
2Lisp and 3Lisp can claim to be dialects of Lisp only on a gen-

124 Indiscrete Affairs · I

erous interpretation. Both dialects are unarguably more dif-
ferent from the original Lisp 1.5 than are all other dialects that
have previously been proposed, including for example Scheme,
mdl, nil, seus, Maclisp, Interlisp, and Common Lisp.16

In spite of this difference, however, I view it as important to
the exercise to call these languages Lisps. The aim in develop-
ing them has not been simply to propose some new variants
in a grand tradition, perhaps better suited for a certain class
of problem than others that have gone before. Rather—and
this is one of the reasons that this dissertation is as long as it
is—it is my claim that, in spite of their differences from that
of standard Lisps,

 The architecture of these new dialects is a more accurate
reconstruction than has heretofore been provided of the
underlying coherence that already organises our communal
understanding of what Lisp is.

I am making an empirical claim, in other words—a claim that
should ultimately be judged as right or wrong. Whether 2Lisp
or 3Lisp are better than previous Lisps is of course a matter of
interest on its own, but it is not the thesis that this dissertation
has set out to argue.

 1g Remarks
 1g·i Comparison with Other Work

Although I know of no previous attempts to construct eitller
a semantically rationalised or a reflective computational calcu-
lus, the research presented here is of course dependent on, and
related to, a large body of prior work. There are in particular

16. Scheme is reported in Sussman and Steele (1975) and in Steele and
Sussman (1978a); mdl in Galley and Pfister (1975), nil in White (1979),
Maclisp in Moon (1974) and Weinreb & Moon (1981), and Interlisp
in Teitelman (1978). Common Lisp and seus are both under develop-
ment, as this is being written, and have not yet been reported in print,
so far as I know (personal communication with Guy Steele and Richard
Weyhrauch).

 3b · Dissertation — Introduction (V0.80)

 125

four general areas of study with which this project is best com-
pared:

1. Investigations into the meta-cognitive and intensional
aspects of problem solving (this includes much current
research in Artificial Intelligence);

2. The design of logical and procedural languages (includ-
ing virtually all of programming language research, as
well as the study of logics and other declarative calculi);

3. General studies of semantics (including both natural
language and logical theories of semantics, and seman-
tical studies of programming languages); and

4. Studies of self-reference, of the sort that have charac-
terised much of metamathematics and the theory of
computability throughout this century, particularly
since Russell, and including the formal study of the
paradoxes, the Gödel incompleteness results, and so
forth.

I will make detailed comments about connections between
this project and such other work throughout the discussion
(for example in [dissertation] chapter 5 I will compare the re-
flective sense of “self-reference” with the notion traditionally
studied in logic and mathematics), but some general com-
ments can be made here.

Consider first the meta-cognitive aspects of problem-
solving, of which the dependency-directed deduction proto-
cols presented by Stallman and Sussman, Doyle, McAllester,
and others are an illustrative example.17 This work depends
on explicit encodings, in some form of meta-language, of in-
formation about object-level structures, used to guide a de-
duction process. Similarly, the meta-level rules of Davis in his
teiresius system,18 and the use of meta-levels rules as an aid
in planning,19 can be viewed as examples of inchoate reflective

17. Stallman and Sussman (1977), de Kleer et al. (1977).
18. Davis (1980)
19. Stefik (1981a and 1981b).

126 Indiscrete Affairs · I

problem solvers. Some of these expressions are primarily pro-
cedural in intent,20 although declarative statements (for ex-
ample about dependencies) are perhaps more common, with
respect to which particular procedural protocols are defined.

The relationship of the current project to this type of work
is more one of support than of direct contribution. I do not
present (or even hint at) problem solving strategies involv-
ing reflective manipulation, although the fact that others are
working in this area has certainly been a motivation for my re-
search. Rather, I attempt to provide a rigorous account of the
particular issues that have to do simply with providing facilities
for reflection, independent of what such facilities are then used
for. An analogy might be drawn to the development of the
λ-calculus, recursive equations, and Lisp, in relationship to the
use of these formalisms in mathematics, symbolic computa-
tion, and so forth: the former projects provide a language and
architecture, to be used reliably, and perhaps without much
conscious thought, as the basis for a wide variety of applica-
tions. The present dissertation will be successful not if it forces
everyone working in meta-cognitive areas to think about the
architecture of reflective formalisms, but almost the opposite:
if it allows them to forget that the technical details of reflection
were ever considered to be problematic. Church’s α-reduction
was a successful manoeuvre precisely because it means that
one can treat the λ-calculus in the natural way; I hope that my
treatment of reflective procedures will enable those who use
3Lisp or any subsequent reflective dialect to treat “backing-
off " in what they take to be “the natural way.”

The “reflective problem-solver” reported by Doyle21 de-
serves a special comment. Again, I provide an underlying ar-
chitecture which might facilitate his project, without actually
contributing solutions to any of his particular problems about
how reflection should be effectively used, or when its deploy-

20. de Kleer et al. (1977).
21. Doyle (1981).

 3b · Dissertation — Introduction (V0.80)

 127

ment is appropriate. Doyle’s envisaged machine is a full-scale
problem solver; it is also (so at least he argues) presumed to be
large, to embody complex theories of the world, and so forth.
In contrast, 3Lisp is not a problem solver at all (all the user is
“given” is a language—very much in need of programming); it
embodies only a small procedural theory of itself, and it is re-
ally quite small. As well as these differences in goals there are
differences in content (I for example endorse a set of reflective
levels, rather than any kind of true instantaneous self-referen-
tial “reflexive” reasoning); it is difficult, however, to determine
with very much detail what his proposal comes to, since his
report is more suggestive than final.

Given that 3Lisp is not a problem solver of the sort Doyle
proposes, it is natural to ask whether it would be a suitable
language in which Doyle might implement his system. There
are two different kinds of answer to this question, depending
on how he takes his project.

If, on the one hand, Doyle is proposing a design of a com-
plete computational architecture (i.e., a process reduced in
terms of an ingredient processor and a structural field), and
wishes to implement it in some convenient underlying lan-
guage, then 3Lisp’s reflective powers will not in themselves
immediately engender corresponding reflective powers in the
virtual machine that he implements. Reflection, as I have been
at considerable pains to demonstrate, is first and foremost a
semantical phenomenon, and semantical properties—designa-
tion and normalisation protocols and reflection and the rest—
do not cross implementation boundaries (this is one of the great
powers, but also a very serious limitation, of implementation).
3Lisp would be useful in such a project to the extent that it is
generally a useful and powerful language, but it is important
to recognise that its reflective powers cannot be used directly
to provide reflective capabilities in other architectures imple-
mented on top of it.

a76

128 Indiscrete Affairs · I

There is an alternative strategy open to Doyle, however, by
which he could use 3Lisp’s reflective powers more directly. If,
rather than defending a generic reflective architecture, he more
simply intended to show how a particular kind of reflective
reasoning was useful, he could perhaps construct such behav-
iour in 3Lisp, and thus use its reflective capabilities rather di-
rectly. There are consequences of this approach, however: he
would have to accept 3Lisp structures and semantics, including
among other things the fact that it is purely a procedural for-
malism. It would not be possible, in other words, to encode a
full descriptive language on top of 3Lisp, and then use 3Lisp’s
reflective powers to reflect in the general sense with these
descriptive structures. If one aims to construct a general or
purely descriptive formalism, one would have to make that ar-
chitecture reflective on its own.

None of these conclusions stand as criticisms of 3Lisp.
They are entailed by fundamental facts about computation
and semantics—not limitations of the particular theory or di-
alect I propose (i.e., they would, and necessarily so, be equally
true of any other proposed architecture).

This is one reason, among many, why I view 3Lisp not as the
contribution made in this dissertation, but rather as an example
to exhibit its contribution: the conceptual structure of how to de-
sign and build a reflective architecture. Thus it is my hope that
what would be useful from this dissertation for Doyle, or for
anyone else in a parallel circumstance, is the detailed structure
of a reflective system that I have attempted to explicate here—
an architecture and a concomitant set of theoretical terms to
help such a person analyse and structure whatever architecture
they design, adopt, or embrace. Thus I would count the present
contribution a success if it proved useful, for Doyle or anyone
else, to make use of:

1. The φ/ψ distinction;

 3b · Dissertation — Introduction (V0.80)

 129

2. The relationship between semantical levels and reflec-
tive levels;

3. The encoding of the reflective model within the cal-
culus;

4. The strategy of adopting a virtually infinite tower of
processors as an ideal in terms of which to define a fi-
nite model of level-shifting;

5. The semantic flatness and uniformity of a normalising
processor;

6. The elegance of category-alignment;

And so forth. It is in this sense that I hope that the theory
and understanding that 3Lisp embodies will contribute to
problem-solving research (and to programming language re-
search), rather than the particular formalism I have developed
and demonstrated by way of illustration.

The second type of research with which this project has strong
ties is the general tradition of providing formalisms to be used
as languages and vehicles for a variety of other projects—in-
cluding the formal statement of theories, the construction of
computational processes, the analysis of human language, and
so forth. I take this tradition to be sufficiently broad (in par-
ticular, to include logic and the λ-calculus, plus virtually all
programming language research) that it is difficult to say very
much that is specific, though a few comments can be made.

First, I of course owe a tremendous debt to the Lisp tradi-
tion in general,22 and also to the recent work of Steele and
Sussman.23 Particularly important is their Scheme dialect—
in many ways the most direct precursor of 2Lisp (In an early
version of the dissertation I called Scheme “1.7-Lisp,” since it

22. References to specific Lisp dialects are given in note 16, above; more
general accounts may be found in Allen (1978), Weisman (1967), Win-
ston and Horn (1981), Charniak et al. (1980), McCarthy et al. (1965), and
McCarthy and Talbott (forthcoming).
23. Steele (1976), Steele & Sussman (1976, 1978b).

a77

130 Indiscrete Affairs · I

takes what I see as approximately half of the step from Lisp 1.5
to the semantically rationalised 2-Lisp). Second, my explicit
attempt to unify the declarative and procedural aspects of
this tradition has already been mentioned—a project that is
(as far as I know) without precedent. Note, as mentioned in
the Introduction, that I do not consider Prolog24 to count as
having done this, since it provides two calculi together, rather
than presenting a single calculus under a unified theory. Fi-
nally, as documented throughout the text, inchoate reflective
behaviour can be found in virtually all comers of computa-
tional practice; the Smalltalk language,25 to mention just one
example, includes a meta-level debugging system which allows
for the inspection and incremental modification of code in the
midst of a computation.

The third and fourth classes of previous work listed above
have to do with general semantics and with self-reference. The
first of these is considered explicitly in [dissertation] chapter
3, where I compare my approach to this subject with model
theories in logic, semantics of the λ-calculus, and the tradi-
tion of programming language semantics; no additional com-
ment is required here. Similarly, the relationship between
the notion of reflection I present and traditional concepts
of self-reference are taken up in more detail in [dissertation]
chapter 5; here I merely comment that my concerns, perhaps
surprisingly, are constrained almost entirely to computational
formalisms. Unless a formal system embodies a locus of active
agency—an internal processor (i.e., process) of some sort—
the entire question of causal relationship between an encoding
of self-referential theory and what I consider a genuine reflec-
tive model cannot even be asked.

We often informally think of a natural deduction “process”
or some other kind of deductive apparatus making inferences

24. Clark and McCabe (1979), Roussel (1975), and Warren et al. (1977).
25. Goldberg (1981); Ingalls (1978).

a78

 3b · Dissertation — Introduction (V0.80)

 131

over first-order sentences, as a heuristic in terms of which to
make sense of the formal notion of derivability. Strictly speak-
ing, however, in the purely declarative tradition derivability is
no more than a formal relationship that holds between certain
sentence types; no activity is involved. There are no notions of
next or of when a certain deduction is made. If one were to
specify an active deductive process over such first-order sen-
tences, then it is imaginable that one could include sentences
(relative to some axiomatisation of that deductive process) in
such a way that the operations of the deductive process were
appropriately controlled by those sentences (this is the sugges-
tion explored briefly in §1·b·ii). The resulting machine, how-
ever—not merely in its reflective incarnation, but even prior
to that, by including an active agency—cannot fairly be con-
sidered simply logic, but rather a full computational formalism
of some sort.

Needless to say, I believe that a reflective version of such
a descriptive system could be built (in fact it is my intent to
develop just such an architecture in the future). My position
with respect to such an image rests on two observations: (i)
the result would be an inherently computational artefact, in vir-
tue of the addition of independent agency, and (ii) 3Lisp, al-
though reflective, is not yet such a formalism, since it is purely
procedural.

I conclude with one final comparison. The formalism closest in
spirit to 3Lisp is Richard Weyhrauch’s fol system,26 although
my project differs from his in several important technical ways.
First, like Doyle’s system, fol is a problem solver: it embodies
a theorem-prover, although it is possible (through the use of
fol’s meta-levels) to give it guidance about the deduction pro-
cess. In spite of those facilities, however, fol is not a program-
ming language. Furthermore, fol adopts—in fact explicitly
endorses—the distinction between declarative and procedural

26. Weyhrauch (1978).

a79

132 Indiscrete Affairs · I

languages (first order logic and Lisp, in particular), using the
procedural calculus as a simulation structure rather than as a
descriptive or designational language. Weyhrauch claims that
the power that emerges from combining—but maintaining as
distinct—these “language-simulation-structure” pairs, as he
calls them (“l-s pairs”), at each level in his meta hierarchy, is
one of his primary contributions. It is my own claim, in con-
trast, that the greatest power will arise from dismantling the
difference between procedural and declarative calculi.

There are other differences as well. I take the interpretation
function that maps terms onto objects in the world outside
the computational systems (φ) to be foundational. It would
appear in Weyhrauch’s systems as if that particular semantical
relationship is abandoned in favour of internal relationships
between one formal system and another. A more crucial dis-
tinction is hard to imagine—though there is some evidence27
that this apparent difference may have to do with our respec-
tive uses of terminology, rather than with deep ontological or
epistemological beliefs.

In sum, fol and 3Lisp are technically quite distinct, and
the theoretical analyses on which they are based almost unre-
lated. At a more abstract level, however, they are clearly based
on similar—and perhaps parallel, if not identical—intuitions.
Furthermore, I would argue that 3Lisp represents merely a
first step in the development of a fully reflective calculus based
on a fully integrated theory of computation and representa-
tion; how such an eventual system, once it were defined, would
differ from fol remains to be seen. It seems likely that the re-
sulting unified calculus, rather than the dual-calculus nature,
would be the most obvious technical distinction, although the
actual structure of the descriptive language, semantical meta-
theories, and so forth, are also likely to differ both in substance
and in detail.

27. I am indebted to Richard Weyhrauch for personal communication
on these points.

 3b · Dissertation — Introduction (V0.80)

 133

One remaining difference is worth exploring in part be-
cause it reveals a deep but possibly distinctive character of my
treatment of Lisp. It is clear from Weyhrauch’s system that
he considers the procedural formalism to represent a kind
of model of the world—in the sense of an (abstract) artefact
whose structure or behaviour mimics that of some other
world of interest. Under this approach the computational be-
haviour can be taken in lieu of or in place of the real behaviour
in the world being studied. Consider for example the numeral
addition that is the best approximation a computer can make
to actually “adding numbers” (whatever that might be). When
we type ‘(+ 1 2)’ into a Lisp processor, and it returns ‘3’, we are
liable to take those numerals not so much as designators of the
respective numbers, but instead as models. There is no doubt
that the input expression ‘(+ 1 2)’ is a linguistic artefact; on the
view I will adopt in this dissertation there is no doubt that
the resultant numeral ‘3’ is also a linguistic artefact. I do want
to admit, however, that there is a not unnatural tendency to
think of the latter as “standing in place of ” the actual number,
in a different sense from standard designation or naming. It is
this sense of simulation rather than description that, as far as I
understand it, underlies Weyhrauch’s use of Lisp.

I fundamentally believe that this is a limited view, howev-
er—and go to considerable trouble to maintain an approach in
which all computational structures are taken to be semantical
in something like a linguistic sense, rather than (being taken
as) serving as models. Many issues are involved—having to do
with such issues as truth, completeness, and so forth—that
a simulation stance cannot deal with. At worst, moreover,
adopting a simulation stance can lead to a view of computa-
tional models that runs in danger of being either radically so-
lipsistic or even, I believe, nihilist. It is exactly the connection
between a computational system and the world that motivates
my entire approach; a connection that I believe can be ignored

a80

134 Indiscrete Affairs · I

only at considerable peril. I in no way rule out computations
that in different respects mimic the behaviour of the world
they are about; it is clear that certain forms of human analy-
sis involve just this kind of thinking (“stepping through” the
transitions of some mechanism in one’s head, for example, to
“be sure that one understands it”). My point is only that such
simulation is still a kind of thinking about the world; it is not the
world being thought about.

 1g·ii The Mathematical Meta-Language
Throughout the dissertation I will employ an informal meta-
language, built up from a rather eclectic combination of devic-
es from quantificational logic, the λ-calculus, and lattice theo-
ry, extended with some straightforward conventions (such as
expressions of the form “if p then a else b” as an abbreviation
for “[p ⊃ a] ⋀ [¬p ⊃ b]”). Notationally I will use set-theoretic
devices (union, membership, etc.), but these should be under-
stood as defined over domains in the Scott-theoretic sense,
rather than over unstructured sets. The notations should by
and large be self-explanatory; a few standard conventions
worth noting are these:

1. ‘[a → b]’ refers to the domain of continuous functions
from a to b;

2. ‘f : [a → b]’ means that f is a function whose domain is
a and whose range is b;

3. ‘<s1, s2, … sk>’ designates the mathematical sequence
consisting of the designata of ‘s1’, ‘s2’, … ‘sk’;

4. ‘si’ refers to the i’th element of s, assuming that s is a
sequence (thus <a, b, c>2 is b);

5. ‘[s ⨯ r]’ designates the (potentially infinite) set of
all tuples whose first member is an element of s and
whose second member is an element of r;

a81

 3b · Dissertation — Introduction (V0.80)

 135

6. ‘a*’ refers to the power domain of a:

[a ∪ [a ⨯ a] ∪ [a ⨯ a ⨯ a] ∪ …]

7. Parentheses and brackets are used interchangeably to
indicate scope and function application in the standard
way.

8. Standard currying is employed to deal with functions
of several arguments. Thus:

 λa1,a2,…ak . e means λa1.[λa2.[… . [λak . e]…]]
 λ<a1,a2,…ak> . e means λa1.[λa2.[… . [λak . e]…]]
 f(b1,b2,…bk) means ((…((f(b1))b2)…)bk)

If I wanted to be more precise, I would be stricter about the
use of domains rather than sets, in order that function conti-
nuity be maintained, and so forth. It is not my intent here to
make the mathematics rigorous, but I trust that it would be
straightforward, given the accounts I set down, to take this
extra step towards formal adequacy.

 1g·iii Examples and Implementations
A considerable number of examples are presented throughout
the dissertation, which can be approximately divided into two
groups: (i) formal statements about Lisp and about semantics,
expressed in the meta-language; and (ii) illustrative programs
and structures expressed in Lisp itself (most of the latter are in
one of the three Lisp dialects I define, though a few are in stan-
dard dialects as well). As the preceding discussion suggests,
the meta-linguistic characterisations have not been checked by
formal means for consistency or accuracy; the proofs and deri-
vations were generated by the author using paper and pencil.
The program examples, on the other hand, were all tested on
computer implementations of 1Lisp, 2Lisp, and 3Lisp devel-
oped in the Maclisp and “Lisp Machine” Lisp dialects of Lisp

a82

136 Indiscrete Affairs · I

at mit (a complete program listing of the third of these—a
Maclisp implementation of 3-Lisp—is given in the Appendix
to this dissertation). Thus, although the examples in the text
were typed in by the author as text—i.e., the lines of charac-
ters in this document are not actual photocopies of computer
interaction—each was nevertheless verified by these imple-
mentations. However the implementation presented in the
Appendix is a photocopy of the actual computer program list-
ing. Any residual errors (it is hard to imagine every one has
been eliminated) must have arisen either from typing errors
or from mistakes in the implementation itself.

a83

 3b · Dissertation — Introduction (V0.80)

 137

 Annotations1

A1 ·31/-1/5 It would also have been correct, and philosophically more expected,
had this been written “adequate theories of intentionality”—i.e., theo-
ries of intentionality-with-a-t,2 the full gamut of issues involved in
how it is that a sentence or structure or event α can be meaningful
or about something. I did however intend the more specific inten-
sionality-with-an-s.

As the discussion throughout this chapter makes evident, and as
is highlighted in dissertation §4c.i,3 in any reflective system of the
sort envisaged one needs to deal not only with extensional issues, hav-
ing to do with the reference, denotation, or designation of symbols
and other intentional entities, but also with usually finer-grained
intensional notions of what they mean. As usual, the issue comes up
not only in the human case, where reflection typically involves think-
ing about the intensional (meaningful) content of other thoughts
and epistemic states, but also in computational contexts (see for
example ·86/1 and ·108/1).

In many respects the architecture presented in this dissertation
and embodied in 3Lisp can be considered to provide, at least in the
first instance, only two kinds of referential access: extensional and
hyper-intensional. The only entities that can be named or referred to,
in 3Lisp, are: (i) entities that other structures or expressions name
or refer to—the default case, in which one refers to them by using
those other structures or expressions “transparently,” in an exten-
sional context; and (ii) other structures or expressions themselves,
which is accomplished by using quotation (either «'» or «“…”») or
the explicit name operator (‘’),4 thereby obtaining both referential
(φ) and causal (ψ) access to that entity as a causally-efficacious me-
chanical ingredient.5

Even though reference to intensions is not supported in 3Lisp,
however,6 that does not mean that intensional issues are off the

1. References are in the form page/paragraph/line; with ranges (of any type) indi-
cated as x:y. For further details see the explanation on p.·
2. «Refer to the “three spellings of intentionality” sidebar—but where is that?
3. Included here as ch. 3c.
4. See 115/-2/1:2.
5. Except cf. a66, below.

6. That is: the ability, given any expression or structure x, to construct a dif-

ferent expression or structure y, such that the extension of y is the intension of x.

138 Indiscrete Affairs · I

table—as indeed they cannot be in any functioning computational
system. As (rather verbosely) discussed in dissertation §4c.i (includ-
ed here as ch. 3c) the foundational notion of λ-abstraction, and
the behaviour associated with the primitive closure bound to the
name lambda in the global environment, can only be understood in
intensional terms.

As explained there, the “function” of a term of the form ‘(lambda
pattern body),’ in informal terms, is in some sense to “capture” both
the declarative and procedural intension of the expression body, in
such a way as to allow that intension to be used or invoked in other
contexts. The issue is that the intensions of expressions are in gen-
eral context-dependent. Lacking a theory of intensions, I was not
able to provide 2Lisp and 3Lisp with a mechanism with which to
name, denote, or refer to the intension of body. What reduction of
the composite expression (lambda pattern body) does, however, is to
produce a structure (a closure) that is co-intensional with (i.e., has
the same intension as) body, but that is also context-independent, so
that that structure can be used, as appropriate, in any other context
in which the intension of body might be needed.

No matter how useful, however, a mechanism that allows one
to construct co-intensional expressions is still a far cry from being
able to designate such intensions explicitly. The latter was an explicit
design goal for Mantiq, as described in the Cover, for which 3Lisp
was intended to be a design exercise. As mentioned there, moreover
(cf. also annotation a3 of ch. 3a), one of the ways I imagined ac-
complishing this, in Mantiq, was by defining the structural field suf-
ficiently abstractly so as to be able to fuse structural identity with an
otherwise-motivated notion of intension or meaning (so that test-
ing whether two structures were structurally the same could stand
in for—could serve as the subpersonal correlate for7—whether they
meant the same thing). By defining the structural field sufficiently
abstractly, that is, en route to what I conceived as a “field-theoretic”
view of computation, I hoped at least to reduce, and perhaps ul-
timately even dismantle, the distinction between intensional and
hyper-intensional reference.

Even at the time, I viewed traditional model-theoretic accounts
of meanings in terms of functions from possible worlds to truth-

7. See A24, below.

 3b · Dissertation — Introduction (V0.80)

 139

values as too coarse-grained for semantical as well as structural
reasons—insufficiently articulated as regards issue of deixis and
context-dependent reference, etc., as well as raising computation-
ally intractable issues of identity, and therefore inappropriate can-
didates for fusion.

I still want to explore this design idea of adopting a “field-theo-
retic” approach to the structural field of a computational process,
that honours intensionally-motivated constraints—one that, at least
if implemented on currently recognisable hardware, would need to
be backed by sophisticated relaxation algorithms to compute these
more motivated but less fine-grained notions of structural identity.
The situation is hugely complicated, however, by the fact that I no
longer believe that “the intension” of an expression or structure is
a well-defined notion. At the very least, the declarative “route” (φ)
from sign to signified needs to be considered as much more con-
tinuous, or at least as a path with arbitrarily many distinct “points”
along it, in order to deal appropriately with the complex sorts of de-
ictic and indexical dependence that natural language illustrates and
that a system like Mantiq would require. An adequate exploration
of these issues therefore remains for future work.

A2 ·31/-1 While the first two issues (formulating an epistemologically ad-
equate descriptive language and unifying that with a theory of com-
putation or procedural consequence) were not addressed in 3Lisp,
as described in the Cover it was my intent to address both of them
in Mantiq.

a3 ·31//-2:-1 For more discussion of the dual-calculus nature of Prolog see
·50/1:21/1.

a4 ·32/1/-3:-2 At this point, in describing “a program able to reason about and
affect its own interpretation,” I have not yet distinguished the vari-
ous meanings of the term ‘interpretation’ that will be discriminated
later in the chapter (in particular, descriptive vs. procedural mean-
ings), but in this context what I primarily had in mind is the more
computationally prominent procedural notion of interpretation
as program execution, rather than the representational or declarative
sense familiar from logic and philosophical semantics.

a5 ·33/1/-4 As mentioned in annotation a2 of the dissertation preliminaries (ch.
3a), to minimise confusion I explicitly flag chapter references that

140 Indiscrete Affairs · I

refer to chapters in the dissertation, of which only chapter 1 is in-
cluded in this Volume,8 so as to distinguish them from references to
chapters in the present volume.

a6 ·33/-1/-3 As remarked in the Cover to this chapter, the writing in the disserta-
tion is rather confused about whether the declarative or represen-
tational interpretation of computational states had to be externally
attributed—by, as it is said, we “external observers”—or whether that
was only a contingent fact about current systems, with the possibil-
ity remaining open of computer systems achieving their own genu-
ine or authentic original intentionality.9 This and a number of other
passages (e.g., see ·35/1/9:10) are written as if such semantics had to
be attributed—an empirically reasonable enough point of view in
1981 (when the dissertation was written), given the state of existing
computer systems, and the philosophical strength of the “formal
symbol manipulation” construal of computation. But even though I
did not feel that most practicioners in artificial intelligence grasped
the gravity of what original intentionality would require (full-blown
normativity, essentially), I was nevertheless already disquiet about
the adequacy of the formal symbol manipulation thesis. As a result,
therefore, as pointed out in other places (e.g., see ·44/1 and a24) it
was not my intent to take as definite stand on the issue as these
passages suggest. (Cf. also such passages as ·35/1/9, where I suggest
that some declarative interpretation was tacitly attributed—a sepa-
rate and also equally indefensible claim.)

a7 ·34/0/2:5 This comment that 2Lisp “makes explicit much of the understanding
of Lisp that tacitly organises most programmers’ understanding”
would have stronger if it had made the normativity more central—
e.g., by saying that 2Lisp makes explicit how it is that its process-
ing regimen honours programmers’ attribution of representational meaning
(just as, in a sound inference regimen, the derivability relation hon-
ours the pre-theoretic attribution of referential meaning—cf. §5c of
the Introduction).

a8 ·34/1/4 See a3 (re ·39/n3/3:6) in “Reflection and Semantics in Lisp,” chapter
4 «decide where to have original».

a9 ·35/1/9:10 See a6, above.
a10 ·35/1/-7 It was misleading, and strictly incorrect, to suggest that declarative

8. For reference to an internet-accessible version of the entire dissertation see
p· of the Introduction.

9. Cf. the discussion at ·33/3.

 3b · Dissertation — Introduction (V0.80)

 141

import and procedural consequence be independently formulated.
My overall intent was for declarative import to precede procedural
consequence, both ontologically and explanatorily (modulo issues
about dynamicism, grounds for pragmatist epistemology, etc.; see
the Introduction p. ·, and a·). The idea was that procedural conse-
quence—what happens to program fragments, how they are execut-
ed—would then be defined so as to honour that declarative import,
just as derivation is defined in a sound logic to honour semantic in-
terpretation. Theoretically, the procedural consequence (execution)
could be defined entirely arbitrarily, but in practice not only would
that not be the intent, but it would vitiate both the whole point and
the intelligibility of the resulting system.

a11 ·35/1/-5:-1 A number of reasons led my to call both dimensions semantic. Su-
perficially, it was rhetorically important since, as mentioned at nu-
merous points throughout this volume, computer science uses the
term ‘semantics’ for the procedural dimension—based in part on
its adoption of a specificational view of programs, with the conse-
quence that an “interpreter” is taken in computer science to be an
engine that effects the behaviour that a program is taken to specify.
More substantially, though, in spite of giving representational se-
mantics or declarative import both ontological and explanatory
priority (cf. the preceding annotation), as mentioned in §3 of the
Introduction I was nevertheless deeply respectful of the overall dy-
namicism about significance in general that computational experi-
ence pushes towards, and hence sympathetic to a pragmatist orien-
tation towards both reasoning and ontology. As will emerge in §·,
in characterising 3Lisp I ultimately formulate a single overarching
account of a computational process’s significance, of which the de-
clarative and procedural end up being aspects or projections, recip-
rocally tied together both structurally (causally) and normatively.

a12 ·35/2/7:8 By “recursively-specifiable but not compositional” I was referring to
what is discussed in §6 of the Introduction. By “strictly composi-
tional” I intended what I discuss there as the originating idea be-
hind compositionality: that that is assigned as the “meaning” of an
ingredient structure remains true to what, in at least some intuitive
sense, the term, in a contextually-dependent way, means or refers
to in that context, rather than to a full account of the contextual-

142 Indiscrete Affairs · I

dependence of that meaning or reference (the latter being what the
“recursively-specifiable” algorithm needs to work with).

a13 ·36/1/9 In using the predicate ‘abstract’ to characterise internal or ingredi-
etnal structures (the second analytic axis along which computation-
al calculi are described), I did not mean to suggest that such struc-
tures are Platonic or otherwise immaterially diaphanous, but merely
that the individuation of such structural elements can be, and in the
2/3Lisp case definitely is, “more abstract,” in the sense of making
fewer distinctions, than are neeeded to make sense of (the concrete
materialities of) written textual or notation expressions. However
the term “internal structure” (rather than “abstract structure”
would have been more consonant with the ensuing discussion—e.g.,
where I say “each structural class be treated in a uniform way by the
primitive processor.”

a14 ·36/-1:7/0 Although the dissertation asserts, in numerous places, that cate-
gory alignment is an important aesthetic underlying the design of
2/3Lisp, the reason for that importance is not well explicated. There
is a little discussion here, mostly about how failures to be category
aligned tend to lead systems to resort to metasyntactic and meta-
structural access; see also the more extensive discussion at the end
of §1.f.i, on pp. ·111:·112. Nevertheless, after the first reports on 3Lisp
were published, I was struck by the fact that the idea of category
alignment was treated by most people I spoke with as at least extra-
neous, perhaps a distracting red herring, and at worst theoretically
inelegant.

As usual, I believe the five things: (i) that the critical response has
some merit; but (ii) unfortunately, perhaps because of that merit,
the original proposal was too quickly dismissed or ignored, at the
cost of understanding either of the underlying issue or of what the
proposed solution was aiming to—and to some extent did—accom-
plish; (iii) that the concerns raised in the criticism are conceptually
orthogonal to the merits of what was being proposed; and (iv) that
as a result it should be—indeed is—possible to develop a solution
that does justice to both the proposal and the critique; but (v) that,
perhaps surprisingly, the development of a solution that simultane-
ously honours the original insight but avoids the issues raised in the
critique will be much harder than one might initially suspect, requir-

 3b · Dissertation — Introduction (V0.80)

 143

ing radical revisions in our overarching metaphysical and ontologi-
cal frameworks.

What is right about the critique, to pick up the first of these
points, is that it is endemic to programming practice to define more
complex or abstract data structures out of simpler ones. Tying in-
stances of such structures to the type structure of their implemen-
tation code not only fails to matter much, but contravenes some
of the most important mandates of structured programming—that
one not make one’s code excessively implementation-dependent.
Clearly, this aesthetic is deeply recognised in class-and object-ori-
ented languages, and is embodied in the notion of an abstract data
type. Whatever it is that motivates the category alignment mandate,
therefore, should clearly be framed in terms of user-defined classes
or types, not in terms of the primitive data structures that imple-
ment them. (In fact this very issue is discussed in §·, on p. ·.)

What is nevertheless right about category alignment, to turn to
the second point—or at least right about the intuition that led me
to propose it—are two things. The first, adduced in this paragraph
(·36/-1:7/0) is that categorical confusion tends to lead to gratuitous
use of semantic ascent, in the form of quotation and other practices
fundamental to genuine reflection. This is the thrust of pp. ·111:112,
cited above; they point out how, in Lisp’s case, a failure of category
alignment leads to excessive (formally necessary but conceptually
unwarranted) uses of quotation and calls to the primitive function
apply. As these examples suggest, even at this relatively superficial
level, sans category alignment, reflection gets very confusing, very
fast.10

The second consideration motivating category alignment cuts
deeper. It is almost fundamental to reflective processes that they
tend to deal with the structures over which they are operating—i.e.,
the structures at one level below, which their own variables and data
structures and arguments etc. denote—in terms of those structures’
procedural and declarative semantical categories. Sometimes that
is not true; sometimes there is something particular about an object-
level structure or situation that requires dedicated focused reflective
attention. But it is in the nature of things that it is typically in terms

10. Cf. my comment «where?», in discussing the differences between 2/3Lisp
and Scheme, that, en route to reflection, quotation needs first to be under-
stood, then to be disciplined, and finally to be unleashed.

144 Indiscrete Affairs · I

of the (more or less reified11) categorical structure of the object level
domain that reflective procedures are most commonly defined.

Because of the formality condition, however—or anyway what-
ever it is that is right about the formality condition, whatever the
formality condition turns into on a participatory construal, etc.—all
that the reflective process has effective access to is structure, not
semantics. And so being able to define structural type predicates that
sort structures according to their semantical character is critically im-
portant.12 In the data-structure-oriented Lisp environment category
or type alignment was a simple way of doing this. Once support
for data abstraction is explicitly introduced, as for example it is in
class systems and most object-oriented languages, more complex
versions of such “alignment” would be simpler to provide.

As mentioned in the Cover, the issue is that declarative semantics
(φ) does not cross implementation boundaries—including the “imple-
mentation boundary” separating an abstract data type or class from the struc-
tures and operations that implement it. That implies that, in a system
of such sort, when a programmer defined a category or class, they
would not only need, as at present, to define its behaviour, but would
also have to specify its declarative import or representational semantics, or
at least say enough about it to ensure that the programmer-speci-
fied behaviour honoured the appropriate norms.13 And to do that would
require adversion to a fully adequate ontological theory of the sub-
ject or task domain of the program itself, rather than merely the sub-
ject or task domain of the language processor. I.e., it would require,
or involve, or however one wants to put it, developing an account of
program semantics, not merely of programming language semantics.

There is no doubt that is a task that should be taken on. That
was the task I intended to address in 4Lisp, the envisaged next step
in the series of design studies en route to Mantiq. But as stated
briefly in chapter 1 (“The Foundations of Computing”), the ontolog-
ical problems proved daunting. The fact that I was not easily able to
surmount them is why 4Lisp was never developed, and why Mantiq

11. That is one of reflection’s advantages, that it can reify what is implicit one
level below. See a75, below.
12. I once thought of this property as that of being syncategorematic, on the
mistaken view that ‘syncategorematic’ mean syntactic (i.e., structural) in virtue
of categories—or perhaps more simply, syntactically (or structurally) categorical. I still
somewhat rue the fact that that was an egregious back-formation.
13. Cf. the dicsussion of Amala in the Cover.

 3b · Dissertation — Introduction (V0.80)

 145

has yet to be designed. It was in part to address them that I wrote
On the Origin of Objects, which from this perspective can be viewed
as an attempt to discern a metaphysical framework that could be
serviceable for a task of this sort. Developing the insights articulated
there into a theoretical system that could form the basis of compu-
tational analysis, design and construction is the task towards which
the design of the fan-calculus14 is oriented.

My belief remains strong that the resulting system would be
powerful, useful, and elegant—as does my resolve to design it. Thirty
years on from designing 3Lisp, however, I am not sure whether I can
honestly yet say that I am more than halfway there.

a15 ·37/1/8 Re ‘independent’: cf. a10, above, on passage ·35/1/-7.
a16 ·37/2/-5:-1 It would have been simple, and for some readers helpful, to frame

some of these points in terms of the philosophical concepts of se-
mantic ascent and descent. Thus in characterising the 2Lisp processor
as semantically flat I am saying that, in 2Lisp and 3Lisp, normalisa-
tion (the default processing regimen) does not, but reflection does,
engage in semantic ascent and descent.

a17 ·38/0/-3:-2 The distinction between an object language and a meta-language
is invariably context-relative. Languages, including small fragments
and/or individual expressions, do not intrinsically have the status of
being at the object or meta level; they acquire any such status only
in relation to another language or expression or intentional system.
In simple contexts the meaning may be clear, but complexities in-
variably arise in any context in which reflection, implementation,
theoretical description, and semantic ascent (and descent) are all
simultaneously at issue. In 3Lisp, for example, code at each level in
the tower is simultaneously object language from the point of view
of the level above, and meta-language from the perspective of the
level below.

In the passage in the text, however, the distinction being made
is not between levels, but beween whole systems. In particular, by
‘meta-language’ I am referring to the external descriptive language
that a theorist might use to describe or theorise 2Lisp or 3Lisp—par-
adigmatically, the mathematical λ-calculus. By ‘object language’ I
mostly meant 2Lisp or 3Lisp—though in the case at issue, regard-
ing the designation of environments and continuations, the object

14. Cf. §· of the Cover.

146 Indiscrete Affairs · I

language would be specific passages of 2Lisp or 3Lisp that were nev-
ertheless “meta” to some other code or processing that those pas-
sages were engendering or representing (at a reflective level, in code
for a meta-circular processor, etc.).

a18 ·38/0/-2 Note that it is designators of environments and continuations that are
part of the protocol code. There is a strong sense, because of the
existence of these designators, that environments and continuations
are themselves part of the definition of 3Lisp, but that is not strict-
ly correct. Better would be to say something along the following
lines: that environments and continuations are extraordinarily good
(realistically: indispensible) theoretical entities in terms of which
3Lisp can be found intelligible. However the truth of that statement
should be not taken as implying that environment structures and con-
tinuation structures are a primitive part of 3Lisp. To speak in that way
would be not only to confuse implementation with implemented,
but also to fail to appreciate the importance of the declarative di-
mension of 3Lisp (and 2Lisp) semantics.

a19 ·38/1/-2:-1 This characterisation in terms of a limiting ideal is what in §1·e·iv I
call a ‘tower’ view of 3Lisp; see especially ·101/1.

a20 ·40/0/-3:-1 I firmly believe the final statement in this paragraph: that nothing
stands in the way of procedurally reflective, semantically rational-
ised versions of languages that support data abstraction, user-de-
fined classes, and message passing. In spite of the promise made
in the middle of the paragraph, however, the submitted disserta-
tion did not show in detail how this could be done. As discussed in
the Cover, and at length in a14 (re ·36/-1:7/0), above, the theoretical
challenges are considerable.

a21 ·41/2/-1 Dismantling the distinction between declarative and procedural cal-
culi (the second design goal identified on the opening page of the
chatper) is of course one of the goal of Mantiq—in effect the subject
matter of this entire paragraph.

a22 ·41/-1/-2 Cf. a11 (·35/1/-5:-1) and the discussion in the Cover, about the use of
the term ‘semantic’ to characterise the unification of these aspects.

a23 ·43/-1/8 «Reference Dennett, Haugeland, Searle, as appropriate…»
a24 ·44/1/-3:-1 As stated in a6, above (at ·33/-1/3), the writing is less than clear about

whether the declarative semantics must be attributed, or could po-
tentially be original. (cont’d)

 3b · Dissertation — Introduction (V0.80)

 147

More important here, however, is the following point: because
reflection is defined in terms of φ, the question of whether or not a
system is or is not a reflective system depends on what one takes to
be the status of the declarative semantics. It is not a peculiarity of
the 3Lisp approach to provide reflection in an architecture defined
in terms of a double (ψ/φ) semantical account, in other words.
Rather, the notion of reflection—of a system reasoning or engaging
in process that is about its own operations and structures—requires
a prior, non-procedural notion of aboutness. Cf. the last sentence in
the subsequent paragraph, which talks of systems dealing with their
own ingredient structures and operations as explicit subject matters.

Hence my sense that, no matter how otherwise gracious, Fried-
man entirely misses the point in attempting to define a notion of
“reflection without the metaphysics” «ref» (though cf. also a·)

a25 ·44/-1:16/0 These two paragraphs are wordy and confusing. See the next anno-
tation (a26).

a26 ·46/0 It would helped, rhetorically, if these two paragraphs (·44/-1:16/0)
had been phrased in terms of the personal/subpersonal distinc-
tion (a framing I of which I was unaware at the time).15 Even then,
though, the issues are subtle.

If, qua person, I think about Virginia Falls, then according to the
Knowledge Representation Hypothesis (krh) that happens in virtue
of my brain’s constituting of a subpersonal process p (formally) ma-
nipulating equally subpersonal representations of Virginia Falls. My
personal-level thoughts about Virginia Falls, therefore, have, as their
subpersonal correlates, something like subpersonal symbolic representa-
tions of Virginia Falls—i.e, subpersonal interior symbols denoting the
falls. If therefore, at the personal level, I then reflectively think about
my (personal) thoughts about Virginia Falls, then by the krh that must
happen in virtue of, at the subpersonal level, an internal processor p
manipulating internal symbols representing those thoughts.

Now at this point the 3Lisp architecture makes an assumption,
which I will call ρ, that it is important to spell out. Depending on
one’s viewpoint, one might either characterise ρ as so obvious as
barely to deserve mention, or indict it as a devious sleight of hand.
Call my personal-level thoughts about Virginia Falls t1, and their
subpersonal correlates r1. Similarly, call my reflective thoughts

15. «Reference: Dennett—was he first?»

148 Indiscrete Affairs · I

about my thoughts about Virginia Falls t2, and their subpersonal
correlates r2. What assumption ρ has to do with is the declarative
semantics of r2.

According to the krh, r2 should be an internal representation
of t1. Instead, what the 3Lisp architecture presumes is that we can
treat r2 as—can assume it is equivalent to, can in some sense take
it to be—a representation of r1. That is, we can define ρ as follows:

ρ Instead of taking the subpersonal correlate of a reflective
thought to represent a personal object-level16 thought, we in-
stead take it to represent the subpersonal correlate of that object-
level thought.

Assumption ρ underwrites the semantic interpretations of reflective
structures presented in the rest of the dissertation. By stipulation:
(i) φ(t1)=Virginia Falls themselves, the cascading sheets of water;
and (ii) φ(t2) = t1, my falls-directed personal-level thoughts. Accord-
ing to the krh, φ(r1) is the same as φ(t1)—that is, the same cascad-
ing sheets of water.17 t1 and r1 are distinguished by type or form, that
is, not by content. The former are thoughts, the latter are (formal)
representations, and both designate the same thing—namely, falls.
At the meta or reflective level, however, the preconditions arise for
conceit ρ. By the krh, φ(t2) and φ(r2) should again coincide; they
should both be t1. By ρ, however—and thus what is embodied in the
3Lisp architecture—instead of having φ(r2)=t1, we have φ(r2)=r1.

This way of looking at things suggests that ρ is a cheat. But there
is another way to understand ρ, according to which ρ is not only far
less problematic, but actually well-motivated. Instead of taking sub-
personal meta-level representations to represent other subpersonal
symbols (instead of representing the personal-level thoughts those
symbols are correlated with), one could instead say that really, as re-
quired be the krh, they do represent the personal level thoughts, but
do so in virtue of bearing a closely-allied but nevertheless distinct
relationship, pretty much like designation, to the corresponding
subpersonal correlates. Label that “closely-allied but nevertheless
distinct relationship” φ′. Then, using the example above: if we take
φ(r2) to be t2, we would have the following:

16. Cf. A15, above.
17. That is what it is to say that personal-level thinking is constituted by a sub-
personal processor manipulating internal representations.

 3b · Dissertation — Introduction (V0.80)

 149

1. φ(t1) = Virginia Falls — stipulation
2. φ(r1) = Virginia Falls — (1) plus krh
3. φ(t2) = t1 — stipulation
4. φ(r2) = t1 — (3) plus krh
5. φ′(r2) = r1 — proposal

That is, as these equations make clear, φ′ would in a sense be the
subpersonal correlate of designation (φ).

What is haunting about this admittedly arcane discussion is that
in teasing apart distinctions (e.g., between personal-level thoughts
and their subpersonal correlates), and then following up the logical
implications of so doing, we end up teasing apart other things (des-
ignation and its subpersonal correlate), in a process that is remi-
niscent of the very problems that 3Lisp inadvertently introduced, by
being a stickler for use/mention distinctions. That is: whereas 3Lisp
was rigorous about distinguishing signs from what they signify, to
the point of ultimately becoming unusably fastidious, the present
discussion is doing the same thing as regards the personal/subper-
sonal distinction.

I believe the morals are profound. As argued in “The Correspon-
dence Continuum” (ch. 10), computational systems are permeated
with cascades of relations between and among entities or relations
that for some purposes can be seen as sufficiently similar so as not
to warrant making a distinction between them, and for other (per-
haps rare) purposes distinguishable (e.g., φ and φ′, in the case at
hand). To put it in the terminology of On the Origin of Objects,18 for
some purposes it may be important to register a distinction be-
tween a thought and its subpersonal correlate; for other purposes,
not. The challenge is to frame the background metaphysical/onto-
logical/epistemological assumptions, and the working theoretical
framework, in ways that can honour this approach of doing justice
to distinction in a (normatively-driven) context-dependent way. The
former, of course, is the aim of o3; the latter, of the fan calculus
project suggested in the Introduction.

a27 ·46/1 This paragraph, too,19 would have been more clearly explicated in
terms of a personal/subpersonal distinction. At issue is what sub-
personal activity underwrites or is correlated with a personal-level

18. See also “Representation and Registration,” ch. · of Volume ii.
19. Cf. the former annotation, A26.

150 Indiscrete Affairs · I

reflection. On the surface, the claim is this: it does not consisting of
interior process p reflecting on r1, which would seem circular. Rather,
the architectural idea is that p considers r2.

What is striking is that this claim is framed with reference to the
level-shifting view.20 The story on the tower view is more interesting.
In particular, on the tower view, one could say that, sure enough,
when, at the personal level, someone has a reflective thought t2
about base-level thought t1, that happens, subpersonally, in virtue
of the person’s interior (subpersonal) process p1 reflecting on sub-
personal correlate r1. But then we discharge the threat of circularity
by offering an account of what it is for subpersonal process p1 to
reflect on r1. Specifically, we iteratively apply the krh, and say that
p1’s reflecting is “sub-subpersonally” realised in virtue of p2 manipu-
lating r2.

While it has real merit, positing such an iterative application
of the krh is also somewhat ironic. It brings up the point made
«where? at least point back to §6 of the Intro. also ·105/1?» that one
virtue of substantial architectures is that some questions need not
be answered. But it ties in as well to the point made in the previ-
ous annotation; that the very distinction between the level-shifting
and tower views is ultimately a choice between two behaviourally-
equivalent registrations.

Perhaps the most important moral, in this case, is that the rough
equivalence of these two views begins to undermine the integrity
or anyway absoluteness of the personal/subpersonal distinction
itself—a point towards which many other issues militate as well.

a28 ·46/2/-3:-1 Cf. “Varieties of Self-Reference” (ch. 6)
«Needs work. Cf. comments in the popl paper. Also see earlier

annotation, and comments at the beginning, about the relationship
between self-reference, introspection, and reflection…»

a29 ·47/2/8 Snobol (“String Oriented Symbolic Language”), a string-processing
language developed at at&t Bell Laboratories in the 1960s, had the
distinctive property of allowing strings to be treated as programs,
thereby enabling programs to be dynamically constructed and ex-
ecuted on the fly. Famous for treating patterns as a first-class data
type, Snobol served in some ways as a precursor to such modern
scripting and text-oriented languages as Perl.

20. For a discussion of the level-shifting and tower views, cf. §1·e·iv, especially
·101/1.

 3b · Dissertation — Introduction (V0.80)

 151

a30 ·52/-2/-4 This is just one of several places throughout the chapter21 where I
talk about reflection needing “actually to matter” to the process in
which it occurs. Unfortunately, the sense that I had in mind, or at
least that I could make good on at the time, was more one of having
concrete physical consequence than of being important. I was perfectly well
that a more encompassing normative sense of mattering was fun-
damental to the long-term goal of genuine reflection.22 However, as
discussed at numerous places in this chapter (e.g., see ·43/-1), I was
under no illusion that 3Lisp achieved the requisite semantic origi-
nality that genuine mattering would require. For these reasons, it
would have been better to have written more modestly of something
like effective consequence.

a31 ·54/1/9:10 The ability to plant seeds, now, so as to ensure future reflection is
tremendously important—not only to the design of 3Lisp and other
procedurally reflective systems, but for an understanding of reflec-
tion in the general case. It is certainly a staple of mundane person-
al psychology: to be able, in advance, to “set oneself up” so as to
ensure that later, when some circumstance arises, one will at that
point stop and reflect (e.g., about what to do or not do).

a32 ·56/2/4:8 The claim that no computational process can achieve the limit of
reflexive (as opposed to reflective) thought is something I thought
at the time the dissertation was written (1981), and so I have left it
standing. However, it is not a statement I would entirely endorse
today (2012). Increasingly, I have come to believe that there are ways
in which it is possible to have a “I am now thinking” thought refer
to itself, or perhaps more accurately to include itself within its referential
domain, without invoking a Necker-cube like reverberation between
one state and another—perhaps in something like the way in which
non-well-founded set theory23 supports the notion of a set having
itself as a member. Descartes’ cogito24 does not seem semantically
ill-formed, after all, even it feels a little phenomenologically unsta-
ble—though the shifting-back-and-forth that accompanies think-
ing about it may derive from a double self-reference, involving not
only (reflexively) thinking that one is thinking, but also (reflectively)
thinking—or recognising—that one is in fact doing that.

21. See ·59/0/10, ·62/0/4, ·62/-1, and ·104/1/-3:-1.
22. See e.g. Haugeland’s “Truth and Rule Following” «ref».
23. «Ref Axcel, others?»
24. Independent of the ‘ergo sum’ part.

(cont’d)

152 Indiscrete Affairs · I

The epistemic achievement necessary to genuine reflexion, I
believe, would involve entertaining a reflexive thought quietly, as
it were—to hold a self-encompassing thought, in such a way that
awareness of its reflexive self-referentiality (or semantic self-inclu-
sion) does not lead one into a kind of vibrating or alternating epis-
temic state. While not necessarily easy, I believe not only that this
can be accomplished, but also—perhaps oddly, perhaps not—that
doing so relates to a number of forms of self-referential discipline
that have been developed in various Asian and other meditative and
mystical traditions. At a more mundane level, and apparently unlike
some others, I do not believe that either the meaning or the truth
of such statements as that “all statements are perspectival” need in
any way be undermined by the fact that they apply, among other
things, to themselves.

As explained in more detail in “Varieties of Self-Reference” (ch.
6) «check», I characterise as ‘reflexive’ not only those states, pro-
cesses, expressions, etc., that are strictly self-referential, in the sense
of being their own semantic extension (e.g., “this very five word
phrase”), but also those that we might call self-applicable, in the sense
of including themselves within their referential or semantic exten-
sion (such as “all phrases in English”). By ‘reflective,’ in contrast,
as here, I refer to processes of “stepping back” and assaying, from
a distinct vantage point (cf. a·), another part or aspect or period of
oneself. There is no doubt, according to this distinction, that even if
computational models of reflexion are possible, 3Lisp was correctly
described as a model of computational reflection. (Cf. also §1·b·iv,
starting on p. ·59.)

a33 ·58/2 Cf. the previous annotation (a32, ·56/2/4:8). As always, “stepping
back” must be defined with reference to an encompassing frame of
declarative or representational semantics (φ), and hence depends
on a background structure of norms. While it is true, as mentioned
in the previous paragraph in the text, that one cannot step outside
of, for example, language, that does not imply that one cannot
achieve a normatively governed vantage point from which to regard
language with some detachment. It is just that that detachment will
not be complete.

a34 ·62/0/4:6 Cf. a30, above (·52/-2/-4). As is evident here, the reason for the inter-

 3b · Dissertation — Introduction (V0.80)

 153

nality of the causal relationship has more directly to do with effec-
tive procedural consequence than with anything authentically nor-
mative (though of course the former is required in order to honour
the latter).

a35 ·63/-2/7:8 At the time this was written, I was already starting to reject the claim
that computational processes are formal, in the sense of operating
independently of their semantic interpretation, but I had yet to
question another widespread assumption: that computational ar-
rangements are abstract—or anyway, as is being said here, temporal
but not otherwise physical. I have come to profoundly disagree with
this view, believing that computational processes are as much deni-
zens of the material or physical world as, for example, are we. See
both o3 and aos.

a36 ·64/1/7:8 «Reference the discussions in other papers—popl? Prologue? cc? I
forget where this is talked about, complete with those α/β figures,
etc.»

a37 ·66/1/3:4 In the dissertation I called these interpretive and communicative re-
ductions, respectively, but in retrospect that choice of terminol-
ogy seems ill-advised. For one thing, to employ the adjective ‘inter-
pretive’ for those processes that contain a single interior locus of
agency is too committed to the computer science sense of the term
‘interpreter,’ which I have explicitly set aside in favour of ‘proces-
sor.’ Similarly, to employ ‘communicative’ for interacting multiple
interior loci of agency commits to their interaction being one of
“communication”—i.e., to involve the exchange of meaningful en-
tities, which is a more specific claim about the nature of process-
process interaction that I want to be committed to at this level.25
The predicates “serial” and “parallel” seem both simpler and more
consonant with general computational practice. Because this termi-
nological change reflects a substantial intervention, however, I have
marked the uses of both terms with brackets here and through the
rest of the chapter.

a38 ·66/1/6 In the dissertation this was written “how these processes communi-
cate” (emphasis added); I have changed it to ‘interact’ in line with
the previous annotation (a37).

25. By analogy, cf. John Haugeland’s characterisation of digitality («ref») in
terms of ‘reading’ and ‘writing’—a similarly unwarranted use of intentional
vocabulary to characterise forms of interaction that are not necessarily inten-
tional at all.

154 Indiscrete Affairs · I

a39 ·66/1/9 This is the English rather than computer science sense of ‘interpret-
ed’; I would now say “registered.”

a40 ·67/1/-6 Cf. also … «Point also to other papers and commentaries as appro-
priate»

a41 ·67/-1/4:6 I continue to believe that the relation between programs and pro-
gramming languages is of far more theoretical importance than is
normally recognised. See «…» for a discussion of the relation be-
tween programming language semantics and program semantics.
«…»

a42 ·71/0/2:3 The last sentence in this ¶ is too strong. I had not yet developed
the language of registration (cf. o3 and “Representation and Regis-
tration”, ch. · of Volume ii). In its terms, I would rephrase the first
sentence of the paragraph as follows: “To implement Lisp, in other
words, all that is required is the provision of a process that can be
registered as consisting of the Lisp structural field and the interior
Lisp processor.” So stated, the claim would be so obvious as not
to have been worth making. The point is that the dissertation was
written in the grip of an untenably naïve realism, which occasionally
(e.g., see a45, below) required caveats and maneuvering to sidestep.

a43 ·72/1/2:3 The characterisations of interpreters (in the computer science sense
of the word), compilers, etc., given over the previous several pages,
are all framed behaviourally, rather than in terms of declarative or
representational semantics. And so it might seem as if a mathemati-
cal theorisation would require formalising only ψ, not φ or a more
generalised significance function Σ. But as discussions throughout
the chapter make evident, I believe that no analysis that does not
treat φ and declarative import generally would cut to the heart of
the computational phenomenon.

a44 ·72/3/7 As reported on Wikipedia,26 the first evidence of a come-from in-
struction appeared under the label ‘cmfrm’ in humorous lists of
fraudulent assembly language instructions. It was elaborated upon
in Clark, R. Lawrence, “We don’t know where to goto if we don’t
know where we’ve come from”, Datamation, 1973, written in response
to Edsger Dijkstra’s “Go To Statement Considered Harmful” «ref».

a45 ·73/1 This and the subsequent paragraph are clearly an informal and
not especially clear amalgam of Fodor’s formality condition, Den-
nett’s intentional stance, and a distinction between original (authentic)

26. «Ref»

 3b · Dissertation — Introduction (V0.80)

 155

and attributed (derived) intentionality. Fodor’s classic formulation of
the formality condition appeared in 1981, the year this dissertation
was written;27 Dennett’s Intentional Stance was not published until
six years later (Dennett 1987), though formulations had appeared
earlier.28

For numerous reasons I no longer believe that ‘computational’
is best understood a predicate on explanations. My current sense is
that the best way to understand the reason I thought so then is that
in 1981 I was still in the grip of an excessively naïve realism—or any-
way did not yet have vocabulary in terms of which to say anything
different (cf. a42, above). The language of registration (o3) would
have allowed the points to be much more simply and effectively pre-
sented.

Note, moreover, even setting aside issues of theoretical vocabu-
lary, that the thesis that computational semantics is necessarily at-
tributed or derivative (see a6, above) does not imply that ‘computa-
tional’ is a predicate on explanations. As I have said elsewhere,29 to
say that intentionality is derivative is not to say that it is not real; it
is real as derivative. A theory of derived intentionality can still be per-
fectly ontological; it would just need to explain the ontological con-
ditions for the interpretation being attributed. (In terms of metaphysical
status, all that derivative intentionality denies is that the intentional-
ity is intrinsic—but that is a different thing. It would be an stringently
impoverished metaphysics, to say the least, that restricted reality to
the intrinsic.)

The main point in the text, however, is that the fundamental the-
sis argued in the dissertation—that reflection is straightforward to
understand and implement if built on a semantically clear base—im-
plies that developing an account of computational reflection, and
hence designing 3Lisp and like languages, requires not only under-
standing such philosophical views about the nature of computing,
but effectively “building them in” to the resulting reflective archi-
tecture.

a46 ·73/-1/-3:-2 The term ‘syntactically’ is used here as in philosophy, not as in com-
puter science. At best, in computer science one would say ‘structur-
ally,’ but the meaning would be so deeply assumed that to give it a
label at all would seem odd.

27. «Fodor 1981.»
28. «Check, and reference if appropriate»
29. «Where?»

156 Indiscrete Affairs · I

a47 ·75//-2:-1 As explained in the annotation «where?» to “Reflection and Seman-
tics in Lisp” (ch. 4), at the time this dissertation was written, per-
haps in part because the project emerged from several years working
the area of knowledge representation, I was singularly focused on
an ingrediential view of programs. I did not considered the position,
much more commonly held in computer science, of viewing a pro-
gram as a specification of, rather than as an ingredient within, a compu-
tational process.

a48 ·76/-2/1:2 Philosophical readers will find it awkward to characterise both as-
pects as semantic. Cf. a11, above (·35/1/-5:-1).

a49 ·77/2/-5:-4 «probably Situations and Attitudes, but maybe one of the earlier pa-
pers—check»

a50 ·77/-1/-7:-5 It is because ‘car’ is being used as a term of English in the text, rath-
er than as a Lisp identifier, that it is formatted in this paragraph
(three times) and elsewhere throughout the chapter in a serif rather
than sans-serif font—i.e., as ‘car’ rather than ‘car.’

a51 ·78/n12/1 The referenced postscript is contained in 3.f.iv (p. 246) of the full
dissertation—not reproduced here, but to which a link is provided
on p. ·.

a52 ·79/0/1:3 Cf. §5c of the Introduction, on p. ·.
a53 ·79/-1/-3:-1 The statement that I will consider cases where s1=d1, while strictly

correct, is misleading. While it is true that self-reference of this sort
is discussed from time to time, such as in §1·b·iv (pp. 59–63), the
topic is raised mostly in order to contrast it with the sorts of self-
reference with which the study of reflection is concerned.

a54 ·80/0/1 Strictly speaking, my reply “Mark Twain” is presumably an instance
or use of the referent of ‘the pseudonym of Samuel Clemens,’ on
the assumption that the latter refers to a type—but the point is clear
enough. In general, as pointed out in the Cover («ref»), the disserta-
tion (fortunately30) pays little attention to type-token distinctions.

a55 ·80/0/5 See chapter 8 of On the Origin of Objects, pp. 243-67, for an extended
discussion of designation-preservation under the label “preserva-
tion of reference.”

a56 ·80/0/-5:-4 To claim that derivability (⊢) is designation-preserving is sloppy
phraseology. What I meant was that, in the ordinary course of
things, derivability is not a “level-crossing” operation. One can in-

30. ‘Fortunately’ because the traditional type/token distinction is profoundly
too simplistic to deal appropriately with the range of one-many relations than
permeate computational systems.

 3b · Dissertation — Introduction (V0.80)

 157

terpret the claim in a more mundane way as saying that if, from
α1…αk one were to derive β on the grounds that β is true if α1…αk
are true, then derivability has preserved the designation truth. But
as well as being vapid, this is false; from falsehood one can derive
anything, including claims that are true. But that was far from my
intent.

a57 ·80/1/-7 “Crucially distinct” but of course normatively related; cf. §5c of the
Introduction.

a58 ·83/-1/5 There is only one numeral per number within any given 2Lisp struc-
tural field; there is no need for multiple tokens or instances. So if
there two distinct composite structures—such as for example (+ 2 3)
and (if (= x y) 1 2)—the occurrences of ‘2’ are structurally identical,
rather than each having its own distinct “token” or “instance” of a
common type. Think of the complex structures as manifolds that
encapsulate the self-same unique numeral. That identity does not
make the numeral into a type, of course; a different 2Lisp process,
with a distinct structural field, would in some sense have its “own”
numeral 2.

The more flexible forms of identity possible within structural
fields makes the issue of types/tokens/instances/uses of types—that
is, the question of what is one and what is many—spectacularly more
complex in computational cases than in the familiar case of written,
lexical expressions.

a59 ·84/1/-8 I put “operation” in quotes because of the claim that, au fond, quo-
tation should be understood as a referential or naming convention,
not as a procedure. As discussed in «where?», the operational con-
sequence (ψ) of quotation should be defined, derivatively, terms of
its referential function, rather than—as is so common in program-
ming languages—being taken as a primitive behavioural operation.

a60 ·85/0/4:5 The λ-calculus does not provide for the definition of names. Func-
tions can be designated only by use of the complex expressions that
are needed to designate them. What I had in mind, when writing
that we could “remove atomic designators,” was that we could de-
fine a variant of Lisp that, like the λ-calculus, did not allow defini-
tions, but instead required use of such full composite expressions in
every function position. But the phrasing in the text—“the ability to
name composite expressions as unities” (emphasis added)—is dou-

158 Indiscrete Affairs · I

bly confusing and wrong. It is not that in a dialect that allows defi-
nitions that one names composite expressions; rather, one introduces
unitary names to name what those composite expressions denote
(i.e., functions). Secondly, the point is not that one names things as
unities, but that names are ways to refer to (arbitrary) things with
unities. What is unitary is the name, not the named. What I should
have said is that, in the λ-calculus, one denotes functions with composite
expressions instead of with (instances) of unitary names.

a61 ·86/1/1:2 The story would end only if one could then show that the proce-
dural consequence (ψ) honoured the declarative import in a nor-
matively appropriate way; see §5c of the Introduction.

a62 ·86/1/-7:-6 Cf. the discussion of intensionality (i.e., ‘intensionality-with-an-s’)
in a1 (·31/-1/5), and in dissertation section 4·c·i, includeded here as
ch. 3.c.

a63 ·86/2/6:8 As is true in so many aspects of the design of 2Lisp and 3Lisp, there
may seem to be a considerable discrepancy between the underlying
philosophical motivation for this point (about procedural conse-
quence affecting the context of declarative interpretation) and the
almost triviality of the technical examples brought forward as illus-
tration. In making this particular point, and more generally in recip-
rocally defining declarative import (φ) and procedural consequence
(ψ) within an overarching general significance function (Σ), as de-
scribed in the next paragraph, I meant to do justice to the dynamic,
contextual dependences of reasoning and language in general—such
as our needing, in rational thought, to keep up, in a fully participa-
tory way, with a constantly evolving world, some of which changes
are the result of our own doing. Examples would range from such
simple examples as mundane temporal dependency (using ‘yester-
day,’ tomorrow, to refer to what we today refer to with ‘today’) and
performatives (“I promise to bring you coffee”) to the sorts of con-
sideration that underlie pragmatist epistemology in general. Caus-
ing a side-effect to a variable hardly connotes the richness of the
phenomenon.

a64 ·88/-1/1:3 This is the equivalent, in a computational context, of saying some-
thing that would be obvious, logically: that one cannot specify a
sound proof procedure (⊢) without first having in mind an interpre-
tation function for it to honour.

 3b · Dissertation — Introduction (V0.80)

 159

a65 ·88/-1/3:7 This is too strongly stated. Full independence is not required; the
two accounts could be reciprocally co-constituted. What I should
have said is that defining a processing regimen in a calculus in which
there is nothing more to meaning than “how the symbol or structure
is treated” would not just evacuate the system of any semantic or in-
tentional interest; it would also deprive it, in my view, of any claim to
being a computational system at all—instead, reducing it to “naught
but mere mechanism.” Oil refineries, after all, are constructed of
parts that have procedural consequence.31 Computation, in my
book, in spite of its abiding concern with mechanism and effective-
ness, is nevertheless a fundamentally intentional phenomenon. (Cf.
§5c of the Introduction, and aos).

a66 ·99//1 An important property of reflective procedures implicit in this mod-
el was not adequately explained in the dissertation.

As will become increasingly evident as this chapter proceeds,
and is spelled out in detail in the dissertation’s remaining chapters,
reflective procedures are used in 3Lisp in those cases that would in-
volve the use of intensional procedures in non-reflective languages32—
i.e., procedures that, in computational (ψ) terms, “do not evalu-
ate their arguments,” or, to put it more philosophically, procedures
whose argument positions are opaque or intensional, rather than
transparent or extensional. Quotation is a paradigmatic intensional
operator, but others are ubiquitous, such as: desires, belief reports
and other statements of epistemic state (such as memory reports)
in natural language and thought; possibility and necessity opera-
tors, in logic; and lambda, classical if statements, “left-hand-side”
expressions in assignment statements, etc., in computing. In 3Lisp,
reflective procedures are used to subsume all such intensional prac-
tices.

One might expect it to follow that 3Lisp reflective procedures
would not “evaluate” (i.e., normalise) their arguments—or again, to
put it in philosophical terms, that the argument positions of reflec-

31. Someone might object that programs specify or represent the behaviour
they result in, whereas mechanical parts, of the sort out of which oil refiner-
ies are built, simply have causal consequence. Perhaps that is so. The point is
that, in order to make out a distinction like this between specifying behaviour and
merely leading to behaviour, one needs an account of what it is to represent or
specify (i.e., something like φ).
32. Including not just 2Lisp and all prior dialects of Lisp, but all programming
languages other than 3Lisp.

160 Indiscrete Affairs · I

tive procedures would be opaque or intensional. Interestingly, that
is not so—at least not in any simple sense.

Note that line 18 of the rpp is the only place where reflective pro-
cedures are ever invoked (that is: where their arguments are bound,
their closures expanded, etc.). And as figure 15 makes clear, in that
context, they are invoked perfectly extensionally—their argument
positions are perfectly “transparent.” In fact from a certain per-
spective one can correctly say, of 3Lisp, that all procedure calls are
extensional—that, ultimately, there are no opaque or intensional ar-
gument contexts at all.

What is going on is this. If, in the course of regular “user” or
“object-level” code,33 the processor encounters a redex of the form
(proc α1 α2 … αk), where proc names a “reflective procedure”34 or
is bound to a reflective closure, then, before so much as glancing
at the expressions in argument positions α1 α2 … αk, the proces-
sor effects a level-shift—“backing up,” to use the language of the
Prologue—so as to obtain an appropriately detached vantage point
from which to consider the situation. In 3Lisp, there is exactly one
such “appropriately detached vantage point”: line 18 of the rpp.
From that vantage point, the structures in argument positions α1
α2 … αk are then referred to, perfectly extensionally. Sure enough, to
switch again to philosophical jargon, those structures are mentioned,
not used. But—and this is the important point—mention is a perfectly
valid form of genuine extensional reference. It is genuine extensional ref-
erence to the expressions or structures that are occupying argument
positions α1 α2 … αk.

More generally, the 3Lisp architecture illustrates a non-standard
approach towards opaque or intensional contexts. Traditionally, we
assume that functions or operators that take their arguments in an
opaque or intensional context work in the following way: (i) they
treat their arguments differently from standard-issue (extensional)
functions or operators, but (ii) they do so within the context of the
interpretation of the sentences or complexes in which they occur. In
3Lisp, in contrast, a “reflective redex” in the sense just described35 is
understood as follows: (i) its occurrence signals a shift in interpre-

33. Cf. a15 (re ·38/0/-3:-2).
34. The reason for the quotation marks will be explained in a moment.
35. I.e., a redex of the form (proc α1 α2 … αk), where proc names a reflective
procedure or (equivalently) is bound to a reflective closure.

 3b · Dissertation — Introduction (V0.80)

 161

tive context, to the reflective (meta) level, but (ii) in that different
context the function or operator treats its arguments in the stan-
dard transparent way. In sum, rather than viewing opacity as a dif-
ferent kind of reference (reference is always extensional—that is how
reference works), 3Lisp views it as a change in interpretive context.36

a67 ·101/1 This paragraph is the one place in the chapter where I have added
entire sentences, in order to make a point clear. In the original dis-
sertation, this paragraph consisted, in its entirety, of:

“We will not take a principled view on which account—a single
locus of agency stepping between levels, or an infinite hier-
archy of simultaneous processors—is correct: they turn out,
rather curiously, to be behaviourally equivalent. For certain
purposes one is simpler, for others the other.”

The terminology of ‘level-shifting’ of ‘tower’ views is discussed in
§1·e·iv (see especially ·101/1), and also in “Reflection and Semantics
in Lisp” (chapter 4) and “Implementation of Procedurally Reflective
Languages” (chapter 5).

a68 ·106/1/-2 In the original dissertation, the following parenthetical comment
was inserted at this point (following the words “and so forth”):
“It is important to recognise that the suggestion of constructing a
reflective variant of the λ-calculus represents a category error.” A
few years later, however, contrary to this statement, I did informally
define a reflective version of the λ-calculus, as a vehicle in terms of
which to explain reflection to Jon Barwise.37 I have therefore omit-
ted the parenthetical from this version.

The motivation for the parenthetical remark is clear enough
from the surrounding text. At the time I viewed the λ-calculus as
fundamentally a declarative language for denoting functions, not as
a procedural calculus. But on reflection I am not sure that is entirely
correct. α and β-reduction are deeply enmeshed in the definition of
the λ-calculus, and although there is no requirement that terms be
reduced, and the Church-Rosser theorem allows one to side-step
issues of reduction order, and so forth, I believe that we are correct
to call the λ-calculus a calculus, not simply a language. The system is

36. The example illustrates a general point made in the Introduction: of how
philosophical insight that can be wrested from intensive engagement in the
details of a computational system
37. Cf. annotation a41 in ch. 4, particularly note 10.

162 Indiscrete Affairs · I

more implicitly procedural than the original passage suggested.
a69 ·108/0/2 «The following overlaps with annotation a13 in the popl paper. Com-

bine into one (the popl version is better, except that I should include
the “not pass functions upwards” comment from this one), and
then simply have one annotation refer to the other.»

In a colloquium in the Artificial Intelligence Laboratory at sri In-
ternational, in the spring of 1982, I gave one of the very first talks
on 3Lisp. As it happened, John McCarthy (inventor of Lisp, and de-
signer of Lisp 1.5) attended. Though as a young student I was almost
paralytically anxious about making this claim in front of the great
master, I nevertheless proceeded with what I had planned to say,
and claimed that, according to my analysis, traditional Lisp’s dy-
namic scoping protocols were a “mistake,” to which quotation and
other metastructural manoeuvrings were a partial work-around—
in particular providing a way of handing closures “downwards,”
though there was no way to pass them ”upwards” (in terms of the
usual notion of a control stack; this has nothing to do with the re-
flective hierarchy).

To my surprise—and considerable relief—John McCarthy very
graciously agreed.

a70 ·113/0/1:2 More details are also given in “Reflection and Semantics in Lisp,”
included here as ch. 4.

a71 ·114/-4/-3 Though, as stated here, I originally defined closures to be pairs, by
the time the popl paper was written (“Reflection and Semantics in
Lisp,” ch. 4) I had given them their own distinct structural category.
There is merit in both approaches.38

a72 ·119/1 While it is correct that lambda has first and foremost to do with
naming, I do not believe that this paragraph is strictly correct. For a
better analysis see dissertation section 4·c·i, included here as ch. 3.c.

a73 ·120/b2/-3:-1 «Ref Quine: from “On What There Is,” Review of Metaphysics… …;in-
cluded in From a Logical Point of View (Harper & Row, New York: 1953)»

a74 ·121/1/-2:-1 Cf. a66 (re ·99//1), above.
a75 ·121/-1/-7:-5 This claim is extremely important: (i) that what was used prior to

reflection is mentioned upon reflecting; (ii) what was tacit prior to
reflection becomes used upon reflection. Not only did it influence

38. On the one hand, closures, like all other structural categories except atoms
(variables) and pairs (redexes), are normal form. On the other hand, like at-
oms and pairs, and unlike the other normal form categories, closures are not
unique designators.

 3b · Dissertation — Introduction (V0.80)

 163

the approach to real-world ontology that is sketched in o3; it also
infected the ideas I was mulling on, at the time, about fusing higher-
order and intensional “objectification” levels in Mantiq (cf. a1).

I still believe that a substantial issue remains lurking here, with
which a proper theory of cognition should come to grips: relations
between and among processes of

1. Reification—leading us to find the world intelligible in terms of
objects;

2. Semantic ascent—generating quotation, meta-level concepts and
expressions, and other forms of symbolic or cognitive “men-
tion”);

3. The use of higher-order structures (such as higher-order func-
tions); and

4. Reflection—what we might call “procedural ascent and descent,” in-
volving all the issues adumbrated here, about stepping back,
vantage point, etc.

In our formal efforts to be rigorously clear about the differences
among these notions, we sometimes fail to recognise their similar-
ity—and more seriously, what may be their common genealogy.

Note that Friedman and Wand’s “Reification: Reflection With-
out Metaphysics,” a paper I cite as indicative of the general reaction
to 3Lisp, which set its semantical approach aside, can be under-
stood in this light to be an attempt to wrestle with the first issue on
this list without addressing the other three.

a76 ·127/-1/-9:-6 That declarative semantics does not cross implementation bound-
aries is an extraordinarily serious issue, which has yet to be theo-
rised.

Suppose that architecture or virtual machine y is implemented
on top of language or system x. The question has to do with which
of various properties pi exemplified by x (the underlying system) are
“inherited” by—i.e., true of—system y, in virtue of the implementa-
tion relation holding between them. The answers are both com-
plex and illuminating. There is no way that y can be a “real-time”
system, for example (in the sense of providing metric guarantees
about certain kinds of behaviour, such as providing support for a
routine to run exactly once per second), unless x is also real-time.
So, to adopt a convenient way of speaking, I would say that being

164 Indiscrete Affairs · I

real-time “crosses implementation boundaries downwards” (that is:
that from a system’s being real-time, one can conclude that the sys-
tem on or in which it is implemented is also real-time—and hence all
such systems below it, down to the hardware). Conversely, “being
a finite state machine” is a property that crosses implementation
boundaries upwards, since there is no way to implement a machine
with an indefinitely unbounded store on top of one that has no such
store. Needless to say, being a finite state machine does not cross
implementation boundaries downwards; you can perfectly well imple-
ment a finite state machine in Lisp, which is not one.

The present point is that declarative semantical properties in
general—and thus reflection in particular, since it is defined in terms
of declarative semantics—do not cross implementation boundaries in either
direction. From neither x nor y’s being reflective, in the above exam-
ple, can one deduce anything about whether the other is reflective.

For further discussion see comments in § «?» of the Introduc-
tion, and aos.

a77 ·129/-3 As mentioned in the Cover, I believe it is fair to say that the hopes
expressed in this paragraph were entirely in vain. Dan Friedman, of
Indiana University, was one of the most enthusiastic proponents
of reflection in the programming language community; I owe him
a huge debt of gratitude for the enthusiasm and support he of-
fered subsequent to the publication of the popl paper introducing
3Lisp (“Reflection and Semantics in Lisp,” included here as ch. 4).
However as perhaps best illustrated in his own paper with Mitchell
Wand,39 the first thing that most people did, in bringing reflection
into their own work, was to dismiss every one of these six claims.

For some of the reasons for this dismissal see the discussions
both in the Cover and in the Introduction. Fundamentally, I believe
that it stems from the confluence of two issues: (i) the lack of ap-
propriately strong theoretical engagement discussed in §1 of the
Introduction between and among philosophical enterprises (philo-
sophical logic, philosophy of language, philosophy of mind), the
formal representational tradition (mathematical logic, computer
science data bases, the ai and knowledge representation communi-
ties, etc.), and the programming language community; and (ii) the
inadequacy of our current theoretical frameworks.

39. “Reification: Reflection Without Metaphysics” (Friedman & Wand, 1984).

 3b · Dissertation — Introduction (V0.80)

 165

a78 ·130/1/-7 See also “Varieties of Self-Reference,” included here as chapter 6.
a79 ·131/1/3 This statement remains true: I still intend to develop a reflective de-

scriptive system. Cf. the discussion in §6 of the Introduction, and in
the Cover.

a80 ·133/1 This paragraph contains glimmers of the intuitions that will form
the basis of the proposed fan-calculus, discussed in §6 of the Intro-
duction, and in the Cover.

a81 ·134/0 It was not until 1987 that Rodney Brooks made his famous statement
that the “representation” should be discarded in Artificial Intelli-
gence systems—in favour of a view that, in his words, treated “the
world as its own best model”;40 see also his “Intelligence Without
Reason” and “Intelligence Without Representation.”41 What I take
to be significant about the widely-heralded “sea-change” ushered in
by the work of Brooks and others42 is the fact that it betrays what
I am here attributing to Weyhrauch: a somehow tacit but deep as-
sumption that “representation” meant constructing within the ma-
chine a replica of the world as a whole that could be used in its place—as
opposed to what cognitive scientists and philosophers of mind take
a representational theory of mind to involve, which is that a person
“represents” the world only in the sense of employing some inter-
preted symbols or structures with semantic content involving facts,
entities, and states of affairs in the world. Even an internal structure
with content along the lines of “Make sure you look out constantly
and check the intersection to make sure that it is empty Reification:
Reflection Without Metaphysics” would count as a representation
on the latter, but apparently not the former, view.

It is hardly surprising that the “full simulation” view of represen-
tation needed to be eschewed—though to take that as a rejection of
representation altogether is both a rather extreme (and even bina-
ristic) reaction. Brooks later softened his view, saying that systems
should use representation “only when necessary”—which opens the
door to what representation had originally meant.

For more on Brooks and on the circumstances in which, in my
view, representation is required, etc., see “Rehabilitating Represen-
tation,” ch. 7 of Volume ii.”

a82 ·135/-1/-5:-1 This dissertation was written in 1981 in Bravo, the first “wysiwyg”

40. Brooks 1987.
41. Brooks 1991a & 1991b.

42. «Cf. my entry in the mitecs Encyclopedia»

166 Indiscrete Affairs · I

(“what you see is what you get”) document preparation system,
implemented on the Xerox “Alto” minicomputer—arguably the first
personal computer ever built, developed in the early 1970s at the Xe-
rox Palo Alto Research Center (parc). The first 3Lisp implementation
was developed in Maclisp, a dialect of Lisp implemented under “its”
(“Incompatible Time-Sharing System”) at the Artificial Intelligence
Laboratory at mit, running on Digital Equipment Corporation pdp-6
and pdp-10.

a83 ·136/0/-1 Sure enough, the implementation listed in the appendix to the dis-
sertation did contain a serious bug. Though it handled reflective
procedures correctly, and in general constructed, passed around,
and called continuations appropriately, it failed to deal correctly
with the rare case of reflective continuations called in the course of
normally processed code (which, from a level-shifting point of view,
require an instantaneous double level shift). That bug was corrected
in the implementation presented in “Implementation of Procedur-
ally Reflective Languages,” included here as ch. 5.

167 Indiscrete Affairs · I

Atoms, as I said in [dissertation] section 4a, are used in 2Lisp
as context dependent names. I also made clear, both in that
section and in [dissertation] chapter 3, that they are taken
to designate the referent of the expression to which they are
bound. Finally, I have said that they will be statically scoped.
It is appropriate to look at all of these issues with a little more
care.

The semantical equation governing atoms was given in
[dissertation] section 4.a.iii, repeated here:

 ∀e ∊ envs, f ∊ fields, c ∊ conts, a ∊ atoms [1]
 [Σ(a, e, f, c) = c(e(a), φef(e(a)), e, f)]

If we discharge the use of the abbreviatory φ, this becomes:

 ∀e ∊ envs, f ∊ fields, c ∊ conts, a ∊ atoms [2]
 [Σ(a, e, f, c) = c(e(a),
 Σ(e(a), e, f, [λ<s, d, e1, f1> . d]),
 e, f)]

Because all bindings are in normal-form, the above equation
can be proved equivalent to the following:

 ∀e ∊ envs, f ∊ fields, c ∊ conts, a ∊ atoms [3]
 [Σ(a, e, f, c) = Σ(e(a), e, f, c)]

This is true because, if e(a) is normal, then it will not affect the
e and f that are passed to it. Nonetheless, [2] must stand as the
definition; [3] as a consequence.

What I did not explain, however, is how environments are
constructed. The answer, of course, has first and foremost to

 Procedural Relection in Programming Languages

 3c Lambda Abstraction and
 Procedural Intension†

a1

a2

a3

†Section 4·c·i, pp. 377–392, of Procedural Reflection in Programming Lan-
guages. A link to an internet version of the dissertation is on p. ·.

168 Indiscrete Affairs · I

do with λ-binding. A full account of the significance of atoms
and variables, therefore, must rest on the account of the sig-
nificance of λ-terms. In brief, a λ-term is a complex expression
that designates a function. Structurally, in 2Lisp it is any re-
duction (pair) formed in terms of a designator of the primitive
lambda closure and three arguments: a procedure type, a param-
eter list, and a body expression. The primitive lambda closure is
the binding, in the initial environment, of the atom lambda,
although there is nothing inviolate about this association. The
procedure type argument is typically either expr or impr (for
extensional procedure and intensional procedure, respectively;
I will discuss these terms more below). The parameter list is
a pattern against which arguments are matched, and the body
expression is an expression that, typically, contains occurrenc-
es of the variables named in the parameter pattern. Thus I am
assuming lambda-terms of the following form:

(lambda procedure-type parameters body) [4]

I have of course used λ-terms throughout the dissertation,
both in Lisp and in the meta-language. It is important, how-
ever, not to be misled by this familiarity into thinking we ei-
ther understand or have yet encountered the full set of issues
having to do with λ-abstraction. For this reason the following
discussion is framed as if lambda were being introduced for
the first time. In this spirit, it is helpful to start by reviewing
some simple examples of the use of lambda-terms embedded
in larger composite expressions—without any of the com-
plexities of global variables, top-level definitions, recursion or
the like. These examples are similar in structure to the kind
of term that can be expressed in the λ-calculus (using ‘⟹’, as
always, to mean ‘normalises to’):

((lambda expr [x] (+ x 1)) 3) ⟹ 4 [5]
((lambda expr [f] [6]
 (f (f 3 4) (f 5 6))
 +) ⟹ 18

a4

 3b · Dissertation — Introduction (V0.80)

 169

((lambda expr [g1 g2] [7]
 (g1 (= (nth 1 '[$t])
 (nth 1 ['$t]))
 (g2 [10 20 30])
 (g2 '[10 20 30])))
 if
 (lambda expr [r] (tail 2 r))) ⟹ [30]

[5] is a standard example, of the sort 1Lisp would support: the
expression (lambda expr [x] (+ x 1)) designates the increment
function. [6] illustrates the use of a function designator as an
argument, making evident the fact that 2Lisp is higher order.
Finally, [7] shows that procedurally intensional designators or
imprs (if) can be passed as arguments as readily as exprs.

There is nothing distinguished or special about these lamb-
da terms, other than the fact that lambda designates a primi-
tive closure. Unlike standard Lisps and the original λ-calculus,
in other words, in 2Lisp the label lambda is not treated as a
syntactic mark to distinguish one kind of expression from
general function applications. Like all pairs, lambda terms are
reductions, in which the procedure to which lambda is bound
is reduced with a standard set of arguments. I will show be-
low that lambda is initially bound to an intensional procedure,
but, as the following example demonstrates, this fact docs not
prevent that closure from itself being passed as an argument,
or bound to a different atom:

(((lambda expr [f] [8]
 (f expr [y] (+ y y)))
 lambda)
 5) ⟹ 10

It happens that expr also names a function; thus is even pos-
sible to have such expressions as:

(((lambda expr [funs] [9]
 ((nth 2 funs) (nth 1 funs) [y] (+ y y)))
 [expr lambda])
 5) ⟹ 10

170 Indiscrete Affairs · I

Finally, as usual it is the normal-form closures, rather than
their names in the standard environment, that are primitively
recognised:

> (define beta lambda) [10]
> beta
> (define standard expr)
> standard
> ((beta standard (f) (f f)) type)
> 'function

lambda, in other words, is a functional: a function whose
range is the set of functions:

(type lambda) ⟹ 'function [11]
(type (lambda expr [x] (+ x 1))) ⟹ 'function

Similarly, expr is a function, although I will show how it can
be used in function position only later:

(type expr) ⟹ 'function [12]

Though the examples just given illustrate only a fraction of the
behaviour of lambda that I will ultimately need to character-
ise, some of the most important features are clear.

First, lambda is first and foremost a naming operator: more-
over, the procedural import of lambda terms in this or any oth-
er Lisp arises not from lambda alone, but from general prin-
ciples that permeate structures of all sort, and from the type
argument I have here made explicit as lambda’s first argument.
In what follows I will explore the procedural significance of
lambda terms at length, but it is important to enter into that
discussion fully recognising that it is the body expression that
establishes that procedural import, not lambda itself.

Second, lambda is itself an intensional procedure; neither
the parameter pattern nor the body expression is processed
when the lambda reduction is itself processed. This is clear
in all of the foregoing examples: the parameters—the atoms

a5

a6

exprs

 3b · Dissertation — Introduction (V0.80)

 171

that will be bound when the pattern is matched against the
arguments, as discussed below—are unbound when the lamb-
da term itself is normalised; but the lambda term does not
generate an error when processed. This is because neither the
pattern nor the body is treated extensionally—i.e., as being
in what is called an “extensional context.” (Less clear, although
hinted by [9], is the fact that the procedure-type argument to
lambda is processed at reduction time.)

Further evidence of lambda’s procedural intensionality
with respect to its second and third argument position is pro-
vided in this example:

> ((lambda expr [fun] [13]
 (block (print 'last) (fun 1 2)))
 (block (print 'shoe) +)) shoe last
> 3

In other words processing of the argument to the lambda term
occurred before processing of the body internal to that term.
The body of a lambda term is then processed each time the
function it designates is applied. This fundamental fact about
these expressions will motivate the semantical account.

In spite of lambda’s intensionality, however, there is never-
theless an important sense in which the context in which the
lambda term is itself reduced affects, or at least is relevant to,
the behaviour of the resultant procedure when it is used. In
particular, we have the following:

((lambda expr [fun] [14]
 ((lambda expr [y]
 (fun y))
 2))
 ((lambda expr [y]
 (lambda expr [x] (+ x y)))
 1)) ⟹ 3

In this example, the atom fun is bound to a closure designat-

a7

exprs

172 Indiscrete Affairs · I

ing a function that adds 1 to its argument. This is because the
y in the body of the lexically last λ-term in the example (the
second last line) receives its meaning from the context in which
it was reduced (a context in which y is bound to 1), not from the
context in which the function it designates is applied (a context
in which y is bound to 2). In a dynamically scoped system, [14]
would of course reduce to 4.

The expression in [14] is undeniably difficult to read. I will
adopt a 2Lisp let macro, similar to the 1Lisp macro of the
same name, to abbreviate the use of embedded lambda terms
of this form (this let will be defined in [dissertation] section
4.d.vii). In particular, expressions of the form

(let [[param1 arg1] [15]
 [param2 arg2]
 …
 [paramk argk]]
 body]

will expand into the corresponding expressions

((lambda expr [param1 param2 … paramk] [16]
 body)
 arg1 arg2 … arg2]

Similarly, I will define a “sequential let”, called let*, so that
expressions of the form

(let* [[param1 arg1] [17]
 [param2 arg2]
 …
 [paramk argk]]
 body]

will expand into the corresponding expression

 3b · Dissertation — Introduction (V0.80)

 173

((lambda expr param1 [18]
 ((lambda expr param2
 …
 ((lambda expr paramk body)
 argk)
 …)
 arg2))
 arg1]

Thus in a use of let* each argi may depend on the bindings of
the parameters before it. The difference between these two is
illustrated in:

(let [[x 1]] [19]
 (let [[x (+ x 1)]
 [y (- x 1)]]
 y)) ⟹ 0

(let [(x 1]] [20]
 (let* [[x (+ x 1)]
 [y (- x 1)]]
 y)) ⟹ 1

Although some of the generality of lambda is lost by using
this abbreviation (all lets and let*s, for example, are assumed
to be exprs—i.e., extensional lambdas), I will employ let and
let* forms widely in subsequent examples. The expression in
[14], for example, can be recast using let, generating an expres-
sion much easier to understand, as follows:

(let [[fun [21]
 (let [[y 1]]
 (lambda expr [x] (+ x y)))]]
 (let [[y 2]] (fun y))) ⟹ 3

The behaviour demonstrated in [14] and again in [21] is of
course evidence of what is called static or lexical scoping; if
[14] or [21] reduced to the numeral 4 we would say that dy-
namic or fluid scoping was in effect.

174 Indiscrete Affairs · I

The concepts of dynamic and static scoping, however, are
by and large described in the literature in terms of mechanisms
and/or behaviour: one protocol is treated this way; the other
that. It is not my policy, in this entire exercise, to accept behav-
ioural accounts as explanations. Throughout, I am commit-
ted to being able to answer such questions as “Why do these
scoping regimens behave the way that they do?” and “Why was
static scoping used in 2Lisp and 3Lisp?”

Fortunately, the way we have come at these issues leads to
a much deeper characterisation of what is going on. In par-
ticular, I said that lambda was intensional, but example [21]
makes it clear that it is not hyper-intensional, in the sense of
treating its main argument—the body expression—purely as
a structural or textual object. It is not the case, in other words,
that the reductions involving the function bound to fun in the
third line of [21] consist in the replacing, as a substitute for the
word term ‘fun’, the textual object ‘(+ x y)’. To treat it so would
yield an answer of 4—i.e., would imply that 2Lisp has adopted
dynamic scoping. Rather, the behaviour demonstrated in [21]
shows that what is bound to fun is neither the body itself, as a
textual entity, nor the result of processing the body, but rather
something intermediate. In ways that we need to understand,
what is bound to fun is an object that in some sense is closer
to, or anyway can be associated with, the intension of the body
at the point of the original reduction.

If we had an adequate theory of intensionality, it might be
tempting to say something like the following: that lambda is
an [intensional] function from textual objects (the body expres-
sion and so forth) onto the intension of those textual objects
in the context in force at the time of reduction. The subse-
quent use of such a procedure would then “reduce” (or “apply”,
or whatever intermediate term was chosen as proper to use for
combining functions-in-intension with arguments) this inten-
sion with the appropriate arguments. There is something right

 3b · Dissertation — Introduction (V0.80)

 175

about this, though for two reasons we cannot let it stand as is.
Sadly, first, we have no such theory of functions-in-intension
to express it in terms of. Second, it is not quite right, anyway.
lambda is of course a function from textual objects onto func-
tions, as was made clear earlier; what I need to show, rather, is
that (and how) the functions onto which lambda maps its tex-
tual arguments somehow preserve, in a context-independent
way, the potentially context-dependent intension of the textual
argument in the original context.

Moreover, we can also see that a statically scoped lambda,
of the sort constitutive of 2Lisp and 3Lisp, is a coarser-grained
intensional procedure than is a dynamically scoped lambda.
That is:

t1 Static scoping corresponds to an intensional abstraction
operator; dynamic scoping, to a hyper-intensional abstrac-
tion operator.

In order to understand t1 in depth, we need to retreat a little
from the rather behavioural view of lambda that I have been
presenting, and look more closely at what λ-abstraction con-
sists in from the original perspective of its being a naming op-
erator. It is all very well to show how lambda terms behave,
in other words; but we have not yet adequately answered the
question “What do lambda terms mean?”

Speaking extensionally, lambda terms designate functions;
that much is clear. We also know that functions are sets of
ordered pairs, such that no two pairs coincide in their first ele-
ment. We know, too, what application is: a function applied
to an argument is the second clement of that ordered pair in
the set whose first element is the argument. However none of
this elementary knowledge suggests any relationship between
a function and a function designator. And until we understand
that relation, we will not be in a position to understand, inten-
sionally, that designator’s meaning.

a9

a10

a8

176 Indiscrete Affairs · I

Informally, we have a consensual intuition about λ—that
it is an operator over a list of variables and expressions, des-
ignating the function that is signified by the λ-abstraction of
the given variables in the expression that is its “body” argu-
ment. However this intuition—including its telling use of the
phrase ‘λ-abstraction’—must arise independently of any of
the extensional points made in the preceding paragraph. To
understand the meaning of a λ-term, therefore, requires an
analysis of it as a term.

The fundamental intuition underlying λ-terms and
λ-abstraction in general can be traced at least as far back as
Frege’s study of predicates and sentences in natural language.
In particular, I believe that it is best to understand a λ-term is
as a designator with a hole in it, just as Frege understood a pred-
icate term as a sentence with a hole in it. If, for example, we take
(and assume to be true) the sentence “Mordecai was Esther’s
cousin,” and delete the first designating term, then we obtain
the expression “_____ was Esther’s cousin.” It is easy to imag-
ine constructing an infinite set of other derivative sentences
from this fragment, by filling in the blank with a variety of
other designating terms. Thus for example we might construct
“Aaron was Esther’s cousin” and “the person who lives across the
fjord was Esther’s cousin” and so forth. In general, some of these
constructed sentences will be true, and some will be false. In
the simplest case, also, the truth or falsity hinges not on the ac-
tual form of the designator we insert into the blank (whether
we say ‘the person who lives across the fjord’ or ‘the person who
was here for tea yesterday’), but on the referent of that desig-
nator. Thus our example sentence will be true if the supplied
designator refers to Mordecai; any term codesignative with
the proper name “Mordecai” would serve equally well.

Predicates arise naturally from consideration of sentences
containing blanks; that was Frege’s insight. The situation re-
garding designators containing blanks—and the resultant
functions—is entirely parallel. Thus if we take a complex noun

 3b · Dissertation — Introduction (V0.80)

 177

phrase such as “the country immediately to the south of Ethio-
pia,” and remove the final constituent noun phrase, we get the
open phrase “the country immediately to the south of _____.”
Once again, by filling in the blank with any of an infinite set of
possible terms (designating noun phrases), the resultant com-
posite noun phrase will (perhaps) designate another object. In
those cases where the resultant phrase succeeds in picking out
a unique referent, we say: (i) that the object so selected is in
the range of what is designated by the phrase that contained
the blank; and (ii) that the object designated by the phrase
we insert into the blank is in that entity’s domain. In this way
we erect the entire notion of function with which we are so
familiar.

Once this basic approach is adopted, a raft of more specific
questions arise. What happens, for example, if we construct
a phrase with two blanks? The answer, of course, is that we
are led to a function of more than one argument. What if the
noun phrase we wish to delete occurs more than once (as for
example the term ‘Ichabod’ in “The first person to like Icha-
bod and Ichabod’s horse”)? The power of the λ-calculus can
be seen as a formal device to answer all of these various ques-
tions. In particular, we can understand the formal parameters
as a method of labeling the holes: if one parameter occurs in
more than one position within the body of the lambda expres-
sion, then tokens of the formal parameters stand in place of a
single designator that had more than one occurrence. If there
is more than one formal parameter, then more than a single
noun phrase position has been made “blank.” And so on and
so forth—all of this is familiar.

It is instructive to review this history, for it leads to a partic-
ular stance on some otherwise difficult questions. Note for one
thing how it clarifies a point we started with: that the function
of lambda as a first and foremost a naming operator. In addi-
tion, it is important to recognise how syntactic a characterisa-

a11

178 Indiscrete Affairs · I

tion this has been: I have talked almost completely about signs
and expressions (terms, phrases, etc.), even though we realised
that the semantical import of the resultant sentences or com-
pleted noun phrases depended (in the simple extensional case)
only on the referents of the noun phrases that were inserted
into the blank(s). It was Frege’s technique to motivate the ab-
stract ontological notions of predicates, relations, functions, etc.
as derivative on such syntactic manoeuvring. The technique is
important in the present case because it gives us a stance from
which to ask essentially syntactic or structural questions in or-
der to get at the ontological intuitions behind λ-abstraction
(indeed, it is because I want the structural answers to these
questions that I am pursuing this whole line of thought).

Suppose, then, to stay with the case of defining predicates,
that we wish to define (i.e., name) a predicate by inserting a
blank into some otherwise complete sentence—i.e., by de-
leting a noun phrase from it. What context, we may ask, de-
termines the meaning of the resulting open expression? The
only plausible answer that honours the referential character of
naming is the context in which the definition was originally intro-
duced. Suppose, for example, that while writing this paragraph
I utter the sentence “Bob is going to vote for the President’s eldest
daughter.” Again staying with the simplest case, it is natural to
assume that I refer to the (current) President’s eldest daughter,
known by the name “Maureen Reagan.” If I excise the noun
“Bob” and construct the open sentence “____ is going to vote
for the President’s eldest daughter,” then I have constructed a
predicate true of people who will vote for Maureen Reagan.
That is, the interpretation of “the President’s eldest daughter”
is determined by the context where the predicate was intro-
duced. This, at least, is the simplest and most straightforward
reading. It would undeniably be more complex, even if one
could nonetheless argue that it would be logically coherent,
to suggest that what is designated hyper-intensionally involves

a13

a12

 3b · Dissertation — Introduction (V0.80)

 179

the whole open sentence qua sentence—so that when we asked
whether the resultant predicate is true of some person we
would determine the referent of the phrase “the President” only
at that point. The ground intuition is unarguably extensional.

What does this suggest regarding Lisp? Simply this—that
the natural way to view λ-terms is as:

1. Expressions that designate functions, derived from
2. Composite referring terms, in which one or more in-

gredient terms have been replaced by blanks, where
3. The parameters are a formal mechanism to label the

blanks, so as to facilitate a subsequent process of filling
the blanks in with other terms, and

4. Where the function designated is determined with re-
spect to the context of use where the lambda term is stat-
ed or introduced (as opposed to where the designated
function is subsequently applied).

Notably, the foregoing four points lead us to an adoption of
statically scoped free variables, because we can show how that
procedural mechanism correctly captures the original (declar-
ative) naming intuition. In other words, I am claiming that:

t2 Static scoping is the truest formal reconstruction of the (ul-
timately referential) linguistic intuitions and practice upon
which the notion of λ-abstraction is based.

In general, in order to remain true to Church’s λ-calculus, we
must be true to the understanding that his calculus embodies,
rather than slavishly mimic its operations. This mandate has
further-reaching consequences than those articulated in t2. In
particular, to propose a full substitutional procedural regimen
for 2Lisp would be crazy—it would be to mimic his mecha-
nism, rather than accomplish what his mechanism was for. Since
2Lisp is a formalism with procedural side-effects, such a re-
gime would imply that every occurrence of a formal parameter

a14

a15

a16

180 Indiscrete Affairs · I

within a procedure body would engender another instance of
any side-effects implied by an argument expression. This was
not a problem for Church because the λ-calculus of course has
no side-effects.

In sum, I will insist that the term

(let [[y 1]] [22]
 (lambda expr [x] (+ x y)))

designate the increment function, rather than designating that
function that adds to its argument the referent of the sign “y”
in the context of use of the designating procedure.

As far as it goes, this is straightfoward. I showed in [disser-
tation] chapter 2 how the static reading leads naturally to a
higher-order dialect, to uniform processing of the expression
in “function position” in a redex, and so forth, though in that
chapter I did not do what we have done here: examine the
underlying semantical motivation for this particular choice.
Nor, in that context, did I explicitly examine another subject
to which we must now turn: the intensional significance of a
lambda term. That this further question remains open is seen
when one realises that the preceding discussion argues only
that the extension of the lambda term be determined by the
context of use in force at the point where the lambda term it
introduced. However I have not yet examined the full com-
putational significance of the term in “body” position—i.e., to
use the reconstruction I am recommending, the full computa-
tional significance of the open designator containing demar-
cated blanks.

For pointers, it is again instructive to look at the reduction
regimen that Church adopted for the λ-calculus. As I have
said, the λ-calculus is a statically-scoped higher order formal-
ism. By the discussion just advanced, the λ-calculus should
depend on an intensional lambda, but of course no theory of

a17

 3b · Dissertation — Introduction (V0.80)

 181

“functions in-intension” accompanies theoretical treatments of
the λ-calculus. This is related to the fact that, in the λ-calculus,
the item “λ” is not itself considered to be in a function-des-
ignating position. This is because the λ-calculus is strictly an
extensional system; there is no way in which an appropriately
intensional function could be defined within its boundaries. It
is thus effectively a necessary rather than contingent fact that
λ-terms in the λ-calculus are demarcated notationally, as they
were in the first version of 1Lisp that I presented in [disserta-
tion] chapter 2. (In the λ-calculus, that is, the “λ” is a syncateg-
orematic uninterpreted mark, on a par with parentheses and
dots).

In order to understand the λ-calculus and λ-abstraction
more generally, it is essential to recognize that its substitution-
al reduction regime is defined within this set of constraints.
Superficially, after all, substitution is a hyper-intensional kind
of practice. During β-reductions, actual textual expressions are
substituted, one within another, during the reduction of a
composite λ-calculus term. This would appear to conflict with
the claim made above in t1: that hyper-intensional abstraction
corresponds to dynamic scoping, and intensional abstraction
to static or lexical. How then can I defend my claim of inten-
sional abstraction in a statically scoped formalism, and yet use
the λ-calculus as a motivating example?

The answer is that the λ-calculus has been crafted in such
a way as to enable its hyper-intensional substitution protocols
to mimic or implement the more abstract intensional behaviour
that ideally, if we had a adequate theory of functions-in-inten-
sion, we would be able to define more directly. In particular,
three properties of the λ-calculus contribute to this ability.
First, as already mentioned: the λ-calculus is extensional, the
mark ‘λ’ is not used as a term (i.e., not in function position),
and no facility is provided for the user to construct intensional
functions. Second, there is no primitive quotation operator in

a18

a19

182 Indiscrete Affairs · I

the λ-calculus (and of course no corresponding mechanism of
disquotation), so that it is not possible in general and unpre-
dictable ways to capture an expression from one context and
to slip it into the course of the reduction in some other place
(“behind the back of the reduction rules,” so to speak)—a prac-
tice that genuinely would engender something like dynamic
scoping. Third, as well as superficially involving hyper-inten-
sional β-reduction, the λ-calculus also depends on a seemingly
pesky but in fact critically important additional rule, having to
do with variable capture, called α-reduction. It is a constraint
on β-reduction—the main reductive rule in the λ-calculus—
that terms may not be substituted into positions in such a way
that any open (unbound) variables would be “captured” by an en-
compassing λ-abstraction. If such a capture would arise, one is
obligated first, using α-reduction, to rename the parameters
involved in such a fashion that the capture is avoided. The fol-
lowing, for example, is an incorrect series of β-reductions:

	 (λf . ((λg . (λf . fg)) f)) ; an illegal derivation [23]
 (λf . (λf . ff))

Rather, one must use an instance of α-reduction to rename
the inner f so that the substitution, for g, of the binding of
g will not inadvertently lead that substitution to “become” an
instance of the inner binding. Thus the following is correct:

	 (λf . ((λg . (λf . fg)) f)) ; a legal derivation [24]
 (λf . ((λg . (λh . hg)) f)) ; first an α-reduction
 (λf . (λh . hf)) ; then a valid β-reduction.

In other words α-reduction is expressly designed, from a pro-
cedural point of view, to ensure that, in those cases where the
context of use of a λ-term might conflict with the context of
introduction, the λ-term is adjusted so that the function it des-
ignates remains uninfluenced. That is: the role of α-reduction
in the λ-calculus is to rearrange textual objects so as to avoid

 3b · Dissertation — Introduction (V0.80)

 183

the dynamic scoping that would be implied if α-reduction did not
exist.

Together, in sum, these three conditions ensure that,
in spite of β-reduction’s hyper-intensional character, the
λ-calculus’ overall procedural regimen honours the conditions
of static or lexical scoping.

We are still not done. We need to ask why the reduction in
[23] is ruled out—why dynamic scoping is so carefully avoid-
ed. The answer cannot be that the resulting system is incoher-
ent, since, modulo issues of side effects, β-reductions with no
α-reductions is one way to view Lisp 1.5 and all its descen-
dants. Sure enough the Church-Rosser theorem would not
hold, but, as our experience with these Lisps has shown, one
can simply discard that theorem and decide rather arbitrarily
on one reduction order. But we now have an answer: dynam-
ic scoping violates the condition we adopted above: that the
“meaning” or intension of a λ-term be determined by the con-
text in force in the place where that term is introduced. Vari-
able capture is bad because it alters that intension—thereby
violating intention.

Thus we have reached the following important conclusion:

t3 The reduction of lambda terms must preserve, in a con-
text-independent way, the (potentially) context-depen-
dent intension of the body expression.

This of course is a much stronger result than the overarching
mandate that in every case ψ preserve designation. In general,
reduction (ψ) of composite terms does not preserve intension,
according to a commonsense notion of intension. This is dif-
ficult to say formally, for two reasons. The most serious is the
standard one: that we do not have a theory of intension with
respect to which to formulate it. If one takes the intension of an
expression to be the function from possible worlds onto exten-

184 Indiscrete Affairs · I

sions of that expression in each possible world—the approach
taken in possible world semantics and by such theorists as
Montague1—then it emerges (if one believes that arithmetic
is not contingent) that all designators of the same number are
intensionally as well as extensionally equivalent. Thus (+ 1 1)
and (sqrt 4) would be considered intensionally equivalent to
2 (providing of course we are in a context in which sqrt desig-
nates the square-root function). I would argue, however, that
this conclusion violates lay intuition—that a more adequate
treatment of (even mathematical) intensionality should be
finer grained (perhaps of a sort suggested by Lewis2). Second,
without specifying the intensions of the primitive nominals
in a Lisp system, it is difficult to know whether intension is
preserved in a reduction. Suppose, for example, that the atom
planets designates the sun’s planets, and is bound to the rail
[mercury venus earth … pluto]. Then (cardinality planets)
might reduce to the numeral 9 if cardinality was procedur-
ally defined in terms of length. It is argued, however, that
the phrases “the number of planets” and “nine” are intensionally
distinct because “the number of planets” might have designated
some other number, if there were a different number of plan-
ets, whereas, in this language, “nine” necessarily designates the
number nine. On such an account the reduction of (cardinal-
ity planets) to 9 is not intension preserving.

Making precise our intuitions about the nature of inten-
sionality in general is not my present subject matter, however.
Furthermore, and fortunately, if all we ask of the reduction of
lambda terms to normal form is that intension be preserved,
we do not have to reify intensions at all—we do not even have
to take a position on whether intensions are things. All that
we are bound to ensure is the substance of t2: that the inten-
sional character of the expression over which the lambda term

1. Cf. Montague (1970, 1973). [Note: this footnote was numbered 4 in
the original version of the disseratation.]
2. Lewis (1972).

a20

a21

 3b · Dissertation — Introduction (V0.80)

 185

abstracts must be preserved, in a context-independent way,
in the normal-form function designator to which the lambda
term reduces.

At the declarative level this suffices—it will be my guiding
mandate in defining the procedural treatment of lambda
terms. A further set of questions needs to be answered, how-
ever, having to do with the relationship between the inten-
sional content of a Lisp expression and its full computational
significance, including its procedural consequence. The issue is
best introduced with an example that I will make use of later.
It is a widely appreciated fact that, if an expression x should
not be processed at a given time, but should be processed at
another time, it is standard computational technique to wrap
it in a procedure definition, and then to reduce it subsequently,
rather than simply using it. A simple example is illustrated in
the following two cases: in the first the (print 'there) happens
before the call to (print 'in); in the second it happens after:

> (let [[x (print 'there)]] [25]
 (block (print 'in) x)) there in
> $t
> (let [[x (lambda expr [] (print 'there))]] [26]
 (block (print 'in) (x))) in there
> $t

Because of 2Lisp’s static scoping, which corresponds to this
intensional reading of lambda, this approach can be used even
if variables are involved:

> (let* [[x 'there] [27]
 [y (print x)]]
 (block (print 'in) y)) there in
> $t
> (let* [[x 'there] [28]
 [y (lambda expr [] (print x))]]
 (block (print 'in) (y))) in there
> $t

186 Indiscrete Affairs · I

What this example illustrates is that the side-effects engen-
dered by a term (input/output behaviour is the form of side-
effect illustrated here, but of course control and field effects
are similar) take place only when the term is processed in an ex-
tensional position. In other words if the reduction of a lambda-
term takes (and preserves) an intensional reading of the body
expression, it does not thereby engender the full computation-
al significance of that expression. Such significance arises only
when some other function or context requires an extensional
reading. Side-effects, that is, can be considered to be parts of
the procedural extension of a 2Lisp expression.

The quote function in 2Lisp that I defined in s4-132, and
handles in general, are hyper-intensional operators; it was clear
in their situation that the significance of the mentioned term
was not engendered by the reduction of the hyper-intensional
operator over the term. I have not, however, previously been
forced to ask the question of what happens with respect to
intensional operators, but the examples just adduced yield an
answer: their processing, too, does not release the potential
significance of the term. Or to put it another way:

t4 The full computational significance of both hyper-inten-
sional and intensional computational expressions does not
release the full computational significance latent in their
ingredients.

It is for this reason that the “deferring” technique alluded to
above works in the way that it does. (Note, again, that no sug-
gestion is afforded by the λ-calculus with respect to this con-
cern, since that calculus contains no side-effects at all.) Thus
we might say that ‘intensional’ and ‘hyper-intensional’ are de-
fined not just declaratively, but more generally in terms of full
computational significance.

In sum, we have reach the following constraint: intension-
preserving term transformations do not engender the proce-

a22

 3b · Dissertation — Introduction (V0.80)

 187

dural consequences latent in an expression; those consequenc-
es emerge only during the normalisation of an extensional
redex, in which case intension is not (in general) preserved. Re-
call that although (+ 2 3) reduces to co-extensional 6, it is on my
view not the case that (+ 2 3) and 6 are intensionally equivalent.

One more question needs to be examined, before I am ready
to characterise the full significance of lambda. As noted above,
in spite of my claim that lambda is an intensional operator, it
cannot be the case that lambda is a function from expressions
onto intensions, nor is it the case that lambda terms reduce to
intensions. If x is a term (lambda …), in other words, neither
φ(x) nor ψ(x) is an intension; both possibilities are rejected by
protocols long since accepted. In particular, note that in any
2Lisp form (f . a), the significance of the whole arises from the
application of the function designated by f to the arguments
signified by a. Thus in (+ 2 3), which is in reality (+ . [2 3]), I said
that the whole designated five because the atom “+” designated
the extensionalised addition function, which when applied to
a syntactic designator of a sequence of two numbers, yielded
their sum.

Similarly, in any expression

((lambda type params body) . args) [29]

it follows that the term (lambda …) must designate a func-
tion. Similarly, in a construct like

(let [[f (lambda …)]] [30]
 (f . args)]

f must also designate a function. This is all consistent with the
requirement that variable binding be designation-preserving.
In [30], f and (lambda …) must be co-designative.

It follows, then, that f cannot designate the intension of the
(lambda …) term. Hence (lambda …) cannot normalise to

a23

188 Indiscrete Affairs · I

a designator of that function’s intension. For we do not know
what intensions are, but they are presumably not syntactic,
structural entities. They are not, in other words, elements of
the set of structural field elements s, and ψ has s as its range.
I said earlier, however, that f must be intensionally similar to
the lambda term—what this brings out is that f must be co-

intensional with the lambda term, as well as co-extensional.
The normalisation of lambda redexes, in other words, must
preserve intension as well as extension. That is, to put it all to-
gether:

t5 Structures of the form (lambda pattern body) are context-
dependent function designators. The normalisation of such
forms must yield structures that preserve, in a context-
independent way, the full computational significance of
those designators—both intensional and extensional, both
declarative and procedural.

 • • •
This is as much as I will say regarding lambda in its simple
uses. As usual, in accord with my general approach, I have at-
tempted to characterise lambda terms primarily in terms of
what they mean (declaratively, as names); from this I have at-
tempted to justify an account of how they are to behave. As al-
ways, that is, ψ is subservient to φ.

Finally, in terms of this analysis of lambda, I need to say
how reduction works. The answer is of course quickly stated,
and familiar. When a lambda term is reduced, a closure is con-
structed and returned as the result. When a pair whose car
normalises to a non-primitive closure is encountered, the clo-
sure is reduced with the arguments. If that closure is an expr,
then this reduction begins with the reduction of the cdr of
the pair, followed by a process of binding the variables in the
parameter pattern to the resultant normal-form argument

 3b · Dissertation — Introduction (V0.80)

 189

designator. If the closure is an impr, no argument normalisa-
tion is performed; instead a handle designating the cdr of the
pair is matched against the parameter pattern. In either case
the body of the closure (the body of the original reduction
with lambda) is processed in a context that, as usual, consists
of a field and an environment The field is the field that results
from the processing of the arguments—as usual there is no
structure to the use of fields: a single field is merely passed
along throughout the computation. The environment, how-
ever—this is the mechanism that allows the intension to be
that of the point of introduction—is the environment that
was in force at the point when the closure was constructed,
but augmented to include the bindings generated by the pat-
tern match of arguments against variables.

If we were equipped with a theory of functions in intension,
and could therefore avail ourselves of an intensional operator
in the meta-language, called intension-of, that mapped terms
and lists of formal parameters into intensions—whatever they
might be—then we could specify this entire desired seman-
tical import of lambda in its terms. Lacking such a theory, I
will instead look at lambda from the point of view of desig-
nation and reduction, armed with the mandate that it is the
intensional properties of the resultant structures that are of
primary concern.

190 Indiscrete Affairs · I

 Annotations1

a1

·167/1/3:5 It is true that atoms designate the reference of the expression to
which they are bound, but the normative relation of φ and ψ would
have been more clearly expressed if the sentence had been written:
“they are bound to normal-form designators of their referents.”

a2 ·167/2 As stated in the Introduction to the dissertation (ch. 3b), Σ is a gen-
eral significance function that specifies both the co-constituted declara-
tive import (φ) and procedural consequence (ψ) of computational
structures. If s is the set (or type) of internal structural elements,2
envs of environments, fields of structural field states,3 and conts
of continuations, then, as defined in dissertations chapters 2 and 3:

 φ : [[envs × fields] → [s → d]]
 ψ : [[envs × fields] → [s → s]]
 conts : [[s × envs × fields] → [s × envs × fields]]
 Σ : [[s × envs × fields × conts] → [s × envs × fields]]

a3 ·167/3/1 In the original dissertation the equations in this section were num-
bered s4-430 through s4-459. For this version I have renumbered
them 1-30.

a4 ·168/0/3 By the phrases “λ-term” and “lambda-term,” throughout this sec-
tion, I do not mean the singleton term ‘λ’ or ‘lambda’, but rather
what it would have been better to call a “λ-redex” (or “lambda-
redex)—i.e., composite function-designating term of the form ‘λv . ex-
pression’ in the λ-calculus or ‘(lambda type pattern body)’ in 2Lisp.

In general, I use the version “λ-term” both for such redexes spe-
cifically in the λ-calculus or when I wish to refer to instances of both
kinds, and “lambda-term” when making specific reference to these
structures in 2Lisp.

a5 ·170/2/1 As had been explained in an earlier dissertation chapter, in tran-
scribing interactive 2Lisp sessions, I used ‘>’ as a prompt (before
both input and output), and italics to signal user input.

a6 ·170/-2 This paragaraph is somewhat disingenuous. It is of course true that
the procedural consequence of lambda-terms does not arise from
the name ‘lambda’, though it is definitely associated with the primi-

1. References are in the form page/paragraph/line; with ranges (of any type) indicated
as x:y. For details see the explanation on p.·
2. What in «where?» I call impressions.
3. I.e., a determination of all facts pertaining to issues that are amenable to
side-effects, such as the elements of all pairs and rails.

 3b · Dissertation — Introduction (V0.80)

 191

tive lambda closure. What I believe I meant, though, is that the spe-
cific procedural consequence of normalising a lambda term (i.e.,
lambda redex) has to do with facts about the body. Specifically, as I
explain later in the text, the procedural mandate on lambda redexes
is that, when normalised, they need to preserve the intension of the
body expression.

a7 ·171/4/-2 As explained more clearly in the paragraph following example [14],
in saying “the behaviour of the resultant procedure when it is used”
(emphasis added), I mean when the procedure defined or named by
the lambda term is subsequently, as it is said, “applied.”

a8 ·175/0/4:5 In saying that lambda is “a function from textual objects onto func-
tions” I mean that the range of lambda is the set of functions whose
intensions we are currently discussing; the range is not those inten-
sions themselves.4

a9 ·175/1 That 2Lisp intensions are coarser-grained than (hyper-intensional)
2Lisp text stems in part from the fact that 2Lisp does not deal in any
very serious way with issues of deixis and indexicality (cf. o3).

Thesis t1 is ultimately less important than t5, on p 188.5 It is the
intension-preservation, not the coarse-grainedness, that is impor-
tant about statically-scoped lambdas.

a10 ·175/-1/2:3 I no longer believe that functions are sets of ordered pairs; merely
that we standardly model them as sets of ordered pairs. Cf. “The
Correspondence Continuum” (ch. 11)

a11 ·177/0/-7 ‘Perhaps’ because there may be no country south of what is des-
ignated by the term that fills in the blank—if, for example, it were
‘Chile.’

a12 ·178/0/7:9 The preternatural intimacy of connection between the composition-
al structure of language (noun phrases, verb phrases, etc.) and the
standard ontological structures of the world (objects, properties,
relations, etc.) had haunted me since the 1960s. Cf. the discussion
in o3 (p. 284) of whether God made the compositional structure of
world on Tuesday, and of word on Friday—or whether, as I ultimately
claim in that book, they are a two aspects of a single fact, to be ac-
counted for in an integrated notion of representation-cum-ontology.

4. Someone mathematically inclined might suggest modeling intensions as
functions of some sort; the point would be that the range of lambda is not
those functions-used-to-model-intensions, but rather the functions whose in-
tensions those functions are being used to model.
5. The labels ‘t1’–‘t5’ are not in the original dissertation; they were introduced
for this version, to facilitate cross-reference.

192 Indiscrete Affairs · I

a13 ·178//-3 As I knew perfectly well at the time, the example shows that temporal,
locational, discursive, and other forms of context matter as much as
issues of lexical position. In 2012, if uttered in the u.s., “the President’s
eldest daughter” would refer to Malia Obama; if used in France, to
Giulia Sarkozy, etc.

a14 ·179/0 As linguists and philosophers of language know only too well, is-
sues of the appropriate understanding of intensionality in natural
language are vastly more complex than this paragraph suggests. It
was not until later in the 1980s that I learned enough linguistics to
understand how amateur this paragraph really is.

Not only are the issues complex; there are deep underlying issues
of what gets decided when, if ever. Imagine, for example, that in 2012
I ask someone whether, if they were President of the u.s., they would
expect the First Lady to attend gala events. Even if the question
seems fully understood, it can remain unclear whether the constitu-
ent singular term ‘the First Lady’ was intended to refer to Michelle
Obama, to their current female partner, or to the person who would
be their female partner if that fictitious scenario were to come to
pass. What is perhaps most striking about the example is how seem-
ingly intelligible the question is without this issue being resolved,
even by the questioner—suggesting that the “meaning” or “intension”
of the question, if reifying it even makes sense, may not even require
that such issues be settled. Or to take a different kind of example,
consider the sentence “After the team’s ignominious defeat, every
fan in the city took refuge in a local bar,”6 where the interpretation
of the term ‘local’ is not determined by the locale relevant to the
uttering of the sentence, but is (at least presumably) quantified so
as to be depend on each separate fan. Does that mean that in this
sentence ‘local’ occurs in an intensional context? And so on.

Intensional issues in computation are equally complex. As per-
haps the simplest non-trivial example, consider so-called “left-hand
values”—as for example in code fragment “x[3]=7”, intended to
set the third element of array x to 7. Neither the term ‘x[3]’ in the
computational expression—nor, for that matter, the term “the third
element of array x” in the English gloss—is straightforwardly in an
“extensional position,” in the sense of referring to what the same
computational term would refer to if used in a “right-hand side”

6. A sentence in famous among linguists; «ref».

 3b · Dissertation — Introduction (V0.80)

 193

context, such as “27+x[3],” or the same English phrase would refer
to in a statement “the third element of the array is 49.”

a15 ·179/1/1ff This sentence has been expanded from the original in the disserta-
tion to enumerate these four points explicitly, so to make its original
meaning clear.

a16 ·179/-3/2:4 Cf. §5c of the Introduction.
a17 ·180/0/0:2 For example, under a substitutional regimen the expression:

((lambda expr [f] (+ f f f)) (progn (print "hello") 3))

would print “hello” three times before returning 9.
a18 ·181/0/-3:-1 Cf. note 9 in annotation a14 of ch. 3b, on p. ·142.
a19 ·181/-1 This paragraph has been more than usually edited, for this version,

in order to make its points clearer.
a20 ·184/0/-8:-7 In conjunction, presumably, with a commitment to a closed-world

assumption. Why the example was framed so procedurally, how-
ever, I have no idea.

a21 ·184/0/-4:-3 Notwithstanding this claim, I, like many others, would have been
astonished, in 1981, if someone had foretold that in 2012 the number
of planets would have been reduced to 8.

a22 ·186/1/1 The label ‘s4-132’ refers to a definition on p. 288 of the full disserta-
tion; for a link to an internet accessible version cf. p. ·.

a22 ·187/1/2 Re ‘as noted above’: cf. 175/0/3:9.

194 Indiscrete Affairs · I

	IA · I · B · 03 · a (Prelim) — InDesign
	IA · I · B · 03 · b (Chapter 1) — InDesign
	IA · I · B · 03 · c (§4ci) — InDesign

